Все о тюнинге авто

Круговорот химических элементов на земле. Химические элементы в природе – круговорот и миграция. Живые индикаторы загрязнения природы

Биогеохимические круговороты основных химических элементов


Введение

Возникновение на Земле живой материи обусловило возможность беспрерывной циркуляции в биосфере химических элементов, перехода их из внешней среды в организмы и обратно. Эта циркуляция химических элементов и получила название биогеохимических круговоротов. Биогеохимический круговорот представляет собой часть биотического круговорота, включающую обменные циклы химических элементов абиотического происхождения, без которых не может существовать живое вещество (углерод, кислород, водород, азот, фосфор, сера и многие другие). Обычно выделяют три основных типа биогеохимических круговоротов: круговорот воды, круговороты газообразных веществ с резервным фондом в атмосфере или гидросфере (океан), осадочные циклы химических элементов с резервным фондом в земной коре.

Круговорот воды

Вода - основной элемент, необходимый для жизни. В количественном отношении это наиболее распространенная неорганическая составляющая живой материи.

В океанах сосредоточено 97 % общей массы воды биосферы. Предполагают, что суммарное испарение уравновешивается выпадением осадков. Из океана испаряется больше воды, чем поступает в него с осадками, на суше - наоборот. «Лишние» осадки, выпадающие на суше, попадают в ледяные шапки и ледники, пополняют грунтовые воды (оттуда растения черпают воду для транспирации), наконец, оказываются в озерах и реках, возвращаясь постепенно со стоком в океан. В основном круговорот воды происходит между атмосферой и океаном.

Наличие в атмосфере значительного резервного фонда благоприятствует тому, что круговороты некоторых газообразных веществ способны к достаточно быстрой саморегуляции при различных локальных нарушениях равновесия. Так, избыток диоксида углерода, накопившегося где-либо в результате усиленного окисления или горения, быстро рассеивается ветром; кроме того, интенсивное образование диоксида углерода компенсируется большим его потреблением растениями или превращением в карбонаты. В конечном итоге в результате саморегуляции по типу отрицательной обратной связи круговороты газообразных веществ в глобальном масштабе относительно совершенны. Основными такими циклами являются круговороты углерода (в составе диоксида углерода), азота, кислорода, фосфора, серы и других биогенных элементов.

Круговорот углерода

На суше он начинается с фиксации диоксида углерода растениями в процессе фотосинтеза с образованием органических веществ и побочным выделением кислорода. Часть связанного углерода выделяется во время дыхания растений в составе СО2

Почвенные грибы в зависимости от скорости роста выделяют от 200 до 2000 см3 СО2 на 1 г сухой массы. Немало диоксида углерода выделяют бактерии, которые в пересчете на живую массу дышат в 200 раз интенсивнее человека. Диоксид углерода выделяется также корнями растений и многочисленными живыми организмами. Микроорганизмы разлагают отжившие растения и погибших животных, в результате чего углерод мертвого органического вещества окисляется до диоксида углерода и снова попадает в атмосферу.

Между сушей и Мировым океаном постоянно идут процессы миграции углерода, в которых преобладает вынос его в форме карбонатных и органических соединений с суши в океан. Из Мирового океана на сушу углерод поступает в незначительных количествах в форме СО2, выделяемого в атмосферу. Углекислый газ атмосферы и гидросферы обменивается и обновляется живыми организмами за 395 лет.

Круговорот азота

Так же, как круговорот углерода и другие круговороты, охватывает все области биосферы. В круговороте соединений азота ключевое значение принадлежит микроорганизмам: азотфиксаторам, нитрификаторам и денитрификаторам. Другие же организмы оказывают влияние на круговорот азота лишь после того, как он войдет в состав их клеток. Как известно, бобовые и представители некоторых родов других сосудистых растений (например, ольха, араукария, лох) фиксируют азот с помощью бактерий-симбионтов. То же наблюдается и у некоторых лишайников, фиксирующих азот с помощью симбиотических сине-зеленых водорослей. Очевидно, что биологическая фиксация молекулярного азота свободноживущими и симбиотическими организмами происходит и в автотрофном, и в гетеротрофном звеньях экосистем.

Из огромного запаса азота в атмосфере и осадочной оболочке литосферы в круговороте его участвует только фиксированный азот, усваиваемый живыми организмами суши и океана. В категорию обменного фонда этого элемента входят: азот годичной продукции биомассы, азот биологической фиксации бактериями и другими организмами, ювенильный (вулканогенный) азот, атмосферный (фиксированный при грозах) и техногенный

Нетрудно заметить, что, за исключением растительности тундры, где содержание азота и зольных элементов примерно одинаково, в растительности почти всех других типов масса азота в 2… 3 раза меньше массы зольных элементов. Количество элементов, оборачивающихся в течение года (т.е. емкость биологического круговорота), наибольшее в тропических лесах, затем в черноземных степях и широколиственных лесах умеренного пояса (дубравах).

Круговорот кислорода

В круговороте кислорода отчетливо выражены активная геохимическая деятельность живого вещества, его первостепенная роль в этом процессе. Биогеохимический цикл кислорода является планетарным процессом, который связывает атмосферу и гидросферу с земной корой. Ключевые звенья этого круговорота: образование свободного кислорода при фотосинтезе в зеленых растениях, потребление его для осуществления дыхательных функций всеми живыми организмами, для реакции окисления органических остатков и неорганических веществ (например, сжигания топлива) и другие химические преобразования, ведущие к образованию таких окисленных соединений, как диоксид углерода и вода, и последующему вовлечению их в новый цикл фотосинтетических превращений.

Следует также учитывать использование кислорода для процесса горения И других видов антропогенной деятельности. Предполагается, что в обозримой перспективе ежегодное суммарное потребление кислорода достигнет 210...230 млрд. т. Между тем ежегодное продуцирование этого газа всей фитосферой составляет 240 млрд. т.

Круговорот фосфора

Кларк этого элемента в земной коре равен 0,093 %, что в несколько десятков раз больше кларка азота. Однако в отличие от последнего фосфор не играет роли одного из главных элементов оболочек Земли. Тем не менее геохимический цикл фосфора включает разнообразные пути миграции в земной коре, интенсивный биологический круговорот и миграцию в гидросфере. Фосфор - один из главных органогенных элементов. Его органические соединения играют важную роль в процессах жизнедеятельности всех растений и животных, входят в состав нуклеиновых кислот, сложных белков, фосфолипидов мембран, являются основой биоэнергетических процессов. Фосфор концентрируется живым веществом, где его содержание почти в 10 раз выше, чем в земной коре. На суше протекает интенсивный круговорот фосфора в системе почва-растения-животные-почва.

Круговорот серы

В биосфере сформировался достаточно развитый процесс циклических преобразований серы и ее соединений. Выделяются резервные фонды этого элемента в почве и отложениях (довольно обширные), а также в атмосфере (небольшие). В обменном фонде серы основная роль принадлежит специализированным микроорганизмам, одни виды которых выполняют реакцию окисления, другие - восстановления. На круговоротах азота и серы все больше сказывается промышленное загрязнение воздуха. Сжигание ископаемого топлива существенно увеличивает поступление в атмосферу (и. разумеется, содержание в ней) летучих окислов азота (NО и NО2,) и серы (SO2), особенно в городах. Нынешняя концентрация этих ингредиентов уже становится опасной для биотических компонентов экосистем.

Круговорот калия

Калий, как известно, принимает участие в процессах фотосинтеза, оказывает влияние на углеводный, азотный и фосфорный обмен, существенным образом сказывается на осмотических свойствах клеток. Он концентрируется в плодах и семенах, в интенсивно растущих тканях и органах растений.

Пока что малоизученным остается круговорот калия в водной среде. Каждый год с водным стоком в Мировой океан поступает около 90 млн т этого элемента. Какая-то часть поглощается водными организмами, но значительное количество нигде не фиксируется, и последующее его перемещение неизвестно.

Важной составной частью круговоротов является ионный и твердый сток. Круговорот химических элементов проходит, как правило, сразу в нескольких сопредельных оболочках Земли (атмосфере и гидросфере, гидросфере и педосфере) либо во всех трех геосферах одновременно. Надежность и постоянство осуществления круговоротов обеспечиваются регулярным обменом веществ и энергией между геосферами. Такого рода направленная связь наглядно проявляется на примере ионного стока, представляющего собой процесс выноса реками с суши химических элементов в ионном растворенном состоянии в Мировой океан. Поступившие в ионной форме химические элементы, как и на суше, в водной среде подвергаются воздействию живых организмов, продолжая круговорот. Миграция химических элементов в растворенном состоянии представляет собой гигантский планетарный процесс.

Твердое вещество поверхности Земли не остается неподвижным. Оно также участвует в миграции, перемещаясь поверхностными водами суши. Поверхностные воды наряду с элементами, мигрирующими в растворенном состоянии или с коллоидными частицами, переносят огромные массы обломков горных порол и минералов, называемые твердым стоком (по аналогии со стоком воды). Значительная часть твердого стока перемещается в пределах суши, но и объемы, попадающие в моря, достаточно велики. В Мировой океан с континентов поступает каждый год 22,13 млрд т обломочного и глинистого материала, что примерно в 7 раз превышает количество выносимых растворенных веществ.

Биотехносфера и ноосфера

Своеобразие биогеохимических циклов миграции. Биосфера - не только идеально организованная система, но своеобразный «механизм», в котором связь и соотношение между живым и косным веществом подчиняются строгим закономерностям, таким же непреложным, как законы движения небесных светил. Геохимически эти функции жизни осуществляются благодаря размножению организмов. Живое вещество преодолевает сопротивление среды, стремиться распространиться на свободную территорию.

Скорость размножения - это скорость передачи в биосфере геохимической энергии. Она зависит не только от астрономических параметров, но и от скорости распространения солнечно луча в среде, от размеров организмов, от заключенной в них геохимической энергии.

Существенная особенность живого вещества - его отличие от «косной» среды по пространственным и временным характеристикам. Живому веществу соответствуют особые, только ему присущие пространство и время.

Время индивидуального бытия живых организмов связано с неуклонно идущим процессом старения и смертью, имеющими положительное значение для эволюционного процесса, поскольку недолговечность живых существ обеспечивает не только длительный и непрерывный круговорот биогенного материала, но и значительную изменчивость морфологических форм.

Воздействие человека на биосферу

С ростом масштабов использования природных ресурсов, обусловленных промышленной революцией, антропогенное влияние на биосферу и ее компоненты объективно увеличивается. Закономерный и многосторонний процесс роста производительных сил существеннейшим образом расширил спектр воздействия человека на природу (в том числе и негативного). Вернадский отмечал, что производственная деятельность человека приобретает масштабы, сравнимые с геологическими преобразованиями. Так, к сведению лесов, распашке целинных земель, эрозии и засолению почв, снижению биоразнообразия добавились новые постоянно действующие механические и физико-химические факторы, усугубляющие экологический риск.

Человек эксплуатирует уже более 55 % суши, использует около 13 % речных вод, скорость сведения лесов достигает 18 млн. га в год.

Воздействие на биосферу сводится к четырем главным формам:

Изменение структуры земной поверхности (распашка степей, вырубка лесов, мелиорация, создание искусственных озер и морей, другие изменения режима поверхностных вод и т. д.):

Изменения состава биосферы, круговорота и баланса слагающих ее веществ (изъятие полезных ископаемых, образование отвалов, выброс различных веществ в атмосферу и в водные объекты, изменение влагооборота);

Изменение энергетического, в частности теплового, баланса отдельных районов земного шара, опасное для всей планеты;

Изменения, вносимые в биоту (совокупность живых организмов) в результате истребления некоторых видов, создания новых пород животных и сортов растений, перемещения их на новые места обитания.

Рассматривая роль человека в эволюции биосферы, характеризуют нарушение человеком основных принципов естественного устройства биосферы.

1. Аккумулируя энергию в виде сложных органических соединений и рассеивая ее в виде тепла, природа создала эволюционно сложившийся тепловой баланс, который человек нарушает. При добыче энергоресурсов человек разрушает почвы, гибнет или деградирует растительный покров, загрязняются водные объекты и атмосфера, формируются отвалы пород, что приводит, в частности, к подъему уровня грунтовых вол и появлению в окружающей местности контурного кольца из озер, болот и т. д.

2. Биогеохимичсские цыклы биогенных элементов, участвующих в природных круговоротах, отработаны эволюционно и не приводят к накоплению отходов. Человек же использует вещество планеты крайне неэффективно; при этом образуется огромное количество отходов, многие из которых переводятся из пассивной формы, в которой они находились в природной среде, в активную, токсичную форму. В результате биосфера «обогащается» несвойственными ей соединениями, т.е. нарушается естественное соотношение химических элементов и веществ.

3. При огромном многообразии видов конкурентные и хищнические отношения между ними способствуют установлению биологического равновесия. Путь человечества, к сожалению, отмечен гибелью многих представителей флоры и фауны. По некоторым данным, на Земле исчезает ежедневно один биологический вид.

4. Деятельность людей привела к нарушению популяционной стабильности. Растет количество сопутствующих человеку видов (крыс, тараканов и т. д.), а численность многих других популяций, напротив, сокращается, причем иногда в катастрофических размерах, что ставит вид под угрозу полного исчезновения.

5. Расширяя хозяйственную деятельность, люди в короткие сроки меняют параметры экологических факторов; многие виды не успевают приспособиться к таким быстрым изменениям.

Комплекс антропогенных факторов, влияющих на состояние биосферы, на здоровье населения, исключительно разнообразен.

Биотехносфера

Биотехносфера - это область пашей планеты, в которой существуют живое вещество и созданные человеком урбано-технические объекты и где проявляются их взаимодействие и влияние на внешнюю среду. Биотехносфера - сложный конгломерат многих подсистем, которыми управляет человек. Эти подсистемы не аккумулируют, а расходуют энергию, биомассу и кислород биосферы.

Биотехносфера и составляющие ее техногенные подсистемы расположены в биосфере, но они не обладают большинством свойств и функций, которые присущи природным экосистемам.

Пока существует человечество, биотехносфера будет развиваться. Но бнотехносфера должна пребывать в состоянии экологического самообеспечения, согласованного с законами природы и удовлетворяющего нуждам человеческого общества. При этом общество должно целенаправленно и разумно воздействовать на силы природы.

Ноосфера

Ноосфера - высшая стадия развития биосферы, характеризующаяся сохранением всех естественных закономерностей, присущих биосфере (при высоком уровне развития производительных сил, научной организации воздействия общества на природу), максимальными возможностями общества удовлетворять материальные и культурные потребности человека.

Ноосфера-это новое состояние биосферы, основанное на универсальной связи природы и общества, когда дальнейшая эволюция планеты Земли сделается направляемой разумом.

Необходимость перевода биосферы в ноосферу он рассматривает в качестве гаранта выживания современного человека.

Переход к ноосфере - это непростой и небыстрый процесс выработки принципов согласованных действии, нового поведения людей, смена стандартов, перестройка всего бытия. Человечество должно приступить к разумному регулированию своей численности и существенно снизить негативное давление на природу, а в последующем разработать глубоко обоснованные технологии построения ноосферы на базе сохранения биосферы как обязательного условия жизни.

Между литосферой, гидросферой, атмосферой и живыми организмами Земли постоянно происходит обмен химическими элементами. Этот процесс имеет циклический характер: переместившись из одной сферы в другую, элементы вновь возвращаются в первоначальное состояние. Круговорот элементов имел место в течение всей истории Земли, насчитывающей 4,5 млрд. лет.

Гигантские массы химических веществ переносятся водами Мирового океана. В первую очередь это относится к растворенным газам - диоксиду углерода, кислороду, азоту. Холодная вода высоких широт растворяет газы атмосферы. Поступая с океаническими течениями в тропический пояс, она их выделяет, так как растворимость газов при нагревании уменьшается. Поглощение и выделение газов происходит также при смене теплых и холодных сезонов года.

Огромное влияние на природные циклы некоторых элементов оказало появление жизни на планете. Это, в первую очередь, относится к круговороту главных элементов органического вещества - углерода, водорода и кислорода, а также таких жизненно важных элементов как азот, сера и фосфор. Живые организмы оказывают влияние и на круговорот многих металлических элементов. Несмотря на то, что суммарная масса живых организмов Земли меньше массы земной коры в миллионы раз, растения и животные играют важнейшую роль в перемещении химических элементов.

Деятельность человека также оказывает влияние на круговорот элементов. Особенно заметным оно стало в последнее столетие. При рассмотрении химических аспектов глобальных изменений в круговоротах химических элементов следует учитывать не только изменения в природных круговоротах за счет добавления или удаления присутствующих в них химических веществ в результате обычных циклических или вызванных человеком воздействий, но и поступление в окружающую среду химических веществ, ранее не существовавших в природе. Рассмотрим один из наиболее важных примеров циклического перемещения и миграции химических элементов.

Углерод - основной элемент жизни - содержится в атмосфере в виде диоксида углерода. В океане и пресных водах Земли углерод находится в двух главных формах: в составе органического вещества и в составе взаимосвязанных неорганических частиц: гидрокарбонат-иона - , карбонат иона и растворенного диоксида углерода . Большое количество углерода сосредоточено в виде органических соединений в животных и растениях. Много "неживого" органического вещества имеется в почве. Углерод литосферы содержится также в карбонатных минералах (известняк, доломит, мел, мрамор). Часть углерода входит в состав нефти, каменного угля и природного газа.

Связующим звеном в природном круговороте углерода является диоксид углерода (рис. 1).



Упрощенная схема глобального цикла углерода. Числа в рамках отражают размеры резервуаров в миллиардах тонн - гигатоннах (Гт). Стрелки показывают потоки, а связанные с ними числа выражены в Гт/год.

Самыми крупными резервуарами углерода являются морские отложения и осадочные породы на суше. Однако большая часть этого вещества не взаимодействует с атмосферой, а подвергается круговороту через твердую часть Земли в геологических временных масштабах. Поэтому эти резервуары играют лишь второстепенную роль в сравнительно быстром цикле углерода, протекающем с участием атмосферы. Следующим по величине резервуаром является морская вода. Но и здесь глубинная часть океанов, где содержится основное количество углерода, не взаимодействует с атмосферой так быстро, как их поверхность. Самыми маленькими резервуарами являются биосфера суши и атмосфера. Именно небольшой размер последнего резервуара делает его чувствительным даже к незначительным изменениям процентного содержания углерода в других (больших) резервуарах, например, при сжигании ископаемых топлив.

Современный глобальный цикл углерода состоит из двух меньших циклов. Первый из них заключается в связывании диоксида углерода в ходе фотосинтеза и новом образовании его в процессе жизнедеятельности растений и животных, а также при разложении органических остатков. Второй цикл обусловлен взаимодействием диоксида углерода атмосферы и природных вод:

В последнее столетие в углеродный цикл существенные изменения внесла хозяйственная деятельность человека. Сжигание ископаемого топлива - угля, нефти и газа - привело к увеличению поступления диоксида углерода в атмосферу. Это не очень сильно влияет на распределение масс углерода между оболочками Земли, но может иметь серьезные последствия из-за усиления парникового эффекта.

Круговорот в природе
Деятельность живых организмов сопровождается извлечением из окружающей их неживой природы больших количеств минеральных веществ. После
смерти организмов составляющие их химические элементы возвращаются в окружающую среду. Так возникает биогенный круговорот веществ в природе, т.е.
циркуляция веществ между атмосферой, гидросферой, литосферой и живыми организмами.
Приведём некоторые примеры.
Круговорот воды.
Под действием энергии Солнца вода испаряется с поверхности водоёмов и воздушными течениями переносятся на большие расстояния. Выпадая на
поверхность суши в виде осадков, она способствует разрушению горных пород и делает составляющие их минералы доступными для растений,
микроорганизмов и животных. Она размывает верхний почвенный слой и уходит вместе с растворёнными в ней химическими соединениями и взвешенными
органическими и неорганическими частицами в моря и океаны. Циркуляция воды между океаном и сушей важнейшее звено в поддержании жизни на Земле.
Растения участвуют в круговороте воды двояким способом: извлекают её из почвы и испаряют в атмосферу; часть воды в клетках растений
расщепляется в процессе фотосинтеза. При этом водород фиксируется в виде органических соединений, а кислород поступает в атмосферу.
Животные потребляют воду для поддержания осмотического и солевого равновесия в организме и выделяют её во внешнюю среду вместе с продуктами
обмена веществ.
Круговорот углерода.
Углерод поступает в биосферу в результате фиксации его в процессе фотосинтеза. Количество углерода, ежегодно связываемого растениями,
оценивается в 46 млрд. т. Часть его поступает в тело животных и освобождается в результате дыхания в виде СО2, который вновь поступает в атмосферу.
Кроме того, запасы углерода в атмосфере пополняются за счёт вулканической деятельности и сжигания человеком горючих ископаемых. Хотя основная часть
поступающего в атмосферу диоксида углерода поглощается океаном и откладывается в виде карбонатов, содержание СО2 в воздухе медленно, но неуклонно
повышается.
Круговорот азота.
Азот один из основных биогенных элементов в громадных количествах содержится в атмосфере, где составляет 80% от общей массы её газообразных
компонентов. Однако в молекулярной форме он не может использоваться ни высшими растениями, ни животными.
В форму, пригодную для использования, атмосферный азот переводят электрические разряды (при которых образуются оксиды азота, в соединении с
водой дающие азотистую и азотную кислоты) , азотфиксирующие бактерии и синезелёные водоросли. Одновременно образуется аммиак, который другие
хемосинтезирующие бактерии последовательно переводят в нитриты и нитраты. Последние наиболее усвояемы для растений. Биологическая фиксация азота
на суше составляет примерно 1 г/м2, а в плодородных областях достигает 20 г/м2.
После отмирания организмов гнилостные бактерии разлагают азотсодержащие соединения до аммиака. Часть его уходит в атмосферу, часть
восстанавливается денитрифицирующими бактериями до молекулярного азота, но основная масса окисляется до нитритов и нитратов и вновь используется.
Некоторое количество соединений азота оседает в глубоководных отложениях и надолго (миллионы лет) выключается из круговорота. Эти потери
компенсируются поступлением азота в атмосферу с вулканическими газами.
Круговорот серы.
Сера входит в состав белков и также представляет собой жизненно важный элемент. В виде соединений с металлами сульфидов она залегает в виде руд
на суше и входит в состав глубоководных отложений. В доступную для усвоения растворимую форму эти соединения переводятся хемосинтезирующими
бактериями, способными получать энергию путём окисления восстановленных соединений серы. В результате образуются сульфаты, которые используются
растениями. Глубоко залегающие сульфаты вовлекаются в круговорот другой группой микроорганизмов, восстанавливающих сульфаты до сероводорода.
Круговорот фосфора.
Резервуаром фосфора служат залежи его соединений в горных породах. Вследствие вымывания он попадает в речные системы и частью используется
растениями, а частью уносится в море, где оседает в глубоководных отложениях. Кроме того, в мире ежегодно добывается от 1 до 2 млн. т. фосфорсодержащих
пород. Большая часть этого фосфора также вымывается и исключается из круговорота. Благодаря лову рыбы часть фосфора возвращается на сушу в небольших
размерах (около 60 тыс. т. элементарного фосфора в год) .
Из приведённых примеров видно, какую значительную роль в эволюции неживой природы играют живые организмы. Их деятельность существенно
влияет на формирование состава атмосферы и земной коры. Большой вклад в понимание взаимосвязей между живой и неживой природой внёс выдающийся
советский учёный В. И. Вернадский. Он выявил геологическую роль живых организмов и показал, что их деятельность представляет собой важнейший фактор
преобразования минеральных оболочек планеты.
Таким образом, живые организмы, испытывая на себе влияние факторов неживой природы, своей деятельностью изменяют условия окружающей
среды, т.е. среды своего обитания. Это приводит к изменению структуры всего сообщества биоценоза.
Установлено, что азот, фосфор и калий могут оказывать наибольшее положительное влияние на урожаи культурных растений, и потому эти три
элемента в наибольших количествах вносят в почву с удобрениями, применяемыми в сельском хозяйстве. Поэтому азот и фосфор оказались главной причиной
ускоренной эвтрофизации озёр в странах с интенсивным земледелием. Эвтрофизация это процесс обогащения водоёмов питательными веществами. Она
представляет собой естественное явление в озёрах, так как реки приносят питательные вещества с окружающих дренажных площадей. Однако этот процесс
обычно идёт очень медленно, в течение тысяч лет.
Неестественная эвтрофизация, ведущая к стремительному увеличению продуктивности озёр, происходит в результате стока с сельскохозяйственных
угодий, которые могут быть обогащены питательными веществами удобрений.
Существуют также два других важных источника фосфора сточные воды и моющие средства. Сточные воды, как в своём первоначальном виде, так и
обработанные, обогащены фосфатами. Бытовые детергенты содержат от 15% до 60% биологически разрушаемого фосфата. Кратко можно резюмировать, что
эвтрофизация в конце концов приводит к истощению ресурсов кислорода и к гибели большинства живых организмов в озёрах, а в крайних ситуациях и в
реках.
Организмы в экосистеме связаны общностью энергии и питательных веществ, и необходимо чётко разграничить эти два понятия. Всю экосистему
можно уподобить единому механизму, потребляющему энергию и питательные вещества для совершения работы. Питательные вещества первоначально
происходят из абиотического компонента системы, в который в конце концов и возвращаются либо в качестве отходов жизнедеятельности, либо после гибели
и разрушения организмов. Таким образом, в экосистеме происходит постоянный круговорот питательных веществ, в котором участвуют и живой и неживой
компоненты. Такие круговороты называются биогеохимическими циклами.
На глубине в десятки километров горные породы и минералы подвергаются воздействию высоких давлений и температур. В результате происходит
метаморфизм (изменение) их структуры, минерального, а иногда и химического состава, что приводит к образованию метаморфических пород.
Опускаясь ещё дальше в глубь Земли, метаморфические породы могут расплавиться и образовать магму. Внутренняя энергия Земли (т.е. эндогенные
силы) поднимает магму к поверхности. С расплавленными горными породами, т.е. магмой, химические элементы выносятся на поверхность Земли во время
извержений вулканов, застывают в толще земной коры в виде интрузий. Процессы горообразования поднимают глубинные горные породы и минералы на
поверхность Земли. Здесь горные породы подвергаются воздействию солнца, воды, животных и растений, т.е. разрушаются, переносятся и отлагаются в виде
осадков в новом месте. В результате образуются осадочные горные породы. Они накапливаются в подвижных зонах земной коры и при пригибании снова
опускаются на большие глубины (свыше 10 км) .
Вновь начинаются процессы метаморфизма, переправления, кристаллизации, и химические элементы возвращаются на поверхность Земли. Такой
"маршрут" химических элементов называется большим геологическим круговоротом. Геологический круговорот не замкнут, т.к. часть химических элементов
выходит из круговорота: уносится в космос, закрепляется прочными связями на земной поверхности, а часть поступает извне, из космоса, с метеоритами.
Геологический круговорот это глобальное путешествие химических элементов внутри планеты. Более короткие путешествия они совершают на Земле в
пределах отдельных её участков. Главный инициатор живое вещество. Организмы интенсивно поглощают химические элементы из почвы, воздуха воды. Но
одновременно и возвращают их. Химические элементы вымываются из растений дождевыми водами, выделяются в атмосферу при дыхании и отлагаются в
почве после смерти организмов. Возвращённые химические элементы снова и снова вовлекаются живым веществом в "путешествия". Всё вместе и составляет
биологический, или малый, круговорот химических элементов. Он тоже не замкнут.
Часть элементов-"путешественников" уносится за его пределы с поверхностными и грунтовыми водами, часть на разное время "выключается" из
круговорота и задерживается в деревьях, почве, торфе.
Ещё один маршрут химических элементов проходит сверху вниз от вершин и водоразделов к долинам и руслам рек, впадинам, западинам. На
водоразделы химические элементы поступают только с атмосферными осадками, а выносятся вниз и с водою, и под действием силы тяжести. Расход вещества
преобладает над поступлением, о чём говорит само название ландшафтов водоразделов элювиальные.
На склонах жизнь химических элементов изменяется. Скорость их передвижения резко увеличивается, и они "проезжают" склоны, как пассажиры,
удобно устроившиеся в купе поезда. Ландшафты склонов так и называются транзитными.
"Отдохнуть" от дороги химическим элементам удаётся лишь в аккумулятивных (накапливающих) ландшафтах, расположенных в понижениях рельефа. В
этих местах они часто и остаются, создавая для растительности хорошие условия питания. В некоторых случаях растительности приходится бороться уже с
избытком химических элементов.
Уже много лет назад в распределение химических элементов вмешался человек. С начала ХХ столетия деятельность человека стала главным способом
их путешествия. При добыче полезных ископаемых огромное количество веществ изымается из земной коры. Их промышленная переработка сопровождается
выбросами химических элементов с отходами производства в атмосферу, воды, почвы. Это загрязняет среду обитания живых организмов. На земле
появляются новые участки с высокой концентрацией химических элементов рукотворные геохимические аномалии. Они распространены вокруг рудников
цветных металлов (меди, свинца) . Эти участки иногда напоминают лунные пейзажи, потому что практически лишены жизни из-за высоких содержании
вредных элементов в почвах и водах. Остановить научно-технический прогресс невозможно, но человек должен помнить, что существует порог в загрязнении
природной среды, переходить который нельзя, за которым неизбежны болезни людей и даже вымирание цивилизации.
Создав биогеохимические "свалки", природа, возможно, хотела предостеречь человека от непродуманной, безнравственной деятельности, показать ему
на наглядном примере, к чему приводит нарушение распределения химических элементов в земной коре и на её поверхности.

Круговорот биогенных элементов. Помимо рассмотренных основных элементов, в процессе обмена веществ живого организма принимает участие ряд других. Некоторые из них присутствуют в значительных количествах и относятся к категории макроэлементов, например натрий, калий, кальций, магний. Часть элементов содержится в весьма малых концентрациях (микроэлементы), но они также жизненно необходимы (железо, цинк, медь, марганец и т.п.).[ ...]

Круговороты основных биогенных веществ и элементов. Рассмотрим круговороты наиболее значимых для живых организмов веществ и элементов (рис. 3-8). Круговорот воды относится к большому геологическому; а круговороты биогенных элементов (углерода, кислорода, азота, фосфора, серы и других биогенных элементов) - к малому биогеохимичес-кому.[ ...]

Скорость круговоротов биогенных элементов достаточно высока. Время оборота атмосферного углерода составляет около 8 лет. Ежегодно в наземных экосистемах в круговорот вовлекаются примерно 12% содержащегося в воздухе диоксида углерода. Общее время круговорота азота оценивается более чем в 110 лет, кислорода - в 2500 лет.[ ...]

Биотический круговорот. Круговорот биогенных элементов, обусловленный синтезом и распадом органических веществ в экосистеме, называет биотическим круговоротом веществ. Кроме биогенных элементов в биотический круговорот вовлечены важнейшие для биоты минеральные элементы и множество различных соединений. Поэтому весь циклический процесс химических превращений, обусловленных биотой, особенно когда речь идет о всей биосфере, называют еще биогеахимическим круговоротом.[ ...]

Биотический круговорот - круговорот биогенных элементов и вовлекаемых им других веществ в экосистемах, в биосфере между их биотическими и абиотическими компонентами. Важнейшей чертой биосферного биотического круговорота является высокая степень замкнутости.[ ...]

С другой стороны, биогенные элементы как компоненты биомассы просто меняют молекулы, в состав которых входят, например, нитратный Ы- белковый Ы-иштратный N. Они могут использоваться неоднократно, и круговорот - их характерная черта. В отличие от энергии солнечной радиации запасы биогенных элементов непостоянны. Процесс связывания некоторой их части в живой биомассе снижает количество, остающееся сообществу. Если бы растения и фитофаги в конечном счете не разлагались, запас биогенов исчерпался бы и жизнь на Земле прекратилась. Активность гетеротрофных организмов - решающий фактор сохранения круговоротов биогенных элементов и образования продукции. На рис. 17.24 показано, что высвобождение этих элементов в форме простых неорганических соединений происходит только из системы редуцентов. В действительности же некоторую долю этих простых молекул (особенно СОг) дает и система консументов, однако таким путем в круговорот возвращается весьма незначительная часть биогенных элементов. Решающая роль принадлежит здесь системе редуцентов.[ ...]

Движущими силами круговорота веществ служат потоки энергии Солнца и деятельность живого вещества, приводящие к перемещению огромных масс химических элементов, концентрированию и перераспределению аккумулированной в процессе фотосинтеза энергии. Благодаря фотосинтезу и непрерывно действующим циклическим круговоротам биогенных элементов создается устойчивая организованность всех экосистем и биосферы в целом, осуществляется их нормальное функционирование.[ ...]

При отсутствии внешних потоков биогенных соединений, биосфера может существовать стабильно лишь при существовании замкнутого круговорота веществ, в процессе которого биогенные элементы совершают замкнутые циклы, попеременно переходя из неорганической части биосферы в органическую и. наоборот. Т акой круговорот осуществляется живыми организмами биосферы. Предполагают, что в биосфере содержится около 1027 нескоррелиро-ванных между собой живых организмов. В процессе эволюционного развития биосферы сформировались следующие три группы организмов, различающиеся по своему функциональному назначению и участию в круговороте биогенных элементов: продуценты, редуценты и консументы.[ ...]

Материальные процессы в живой природе, круговороты биогенных элементов сопряжены с потоками энергии стехиометрическими коэффициентами, изменяющимися у самых различных организмов лишь в пределах одного порядка. При этом благодаря высокой эффективности катализа затраты энергии на синтез новых веществ в организмах гораздо меньше чем в технических аналогах этих процессов.[ ...]

Очень важный для практики вывод, вытекающий из многих интенсивных исследований круговорота биогенных элементов, состоит в том, что избыток удобрений может оказаться столь же невыгодным для человека, как и их недостаток. Если в систему вносится больше вещества, чем могут использовать активные в данный момент организмы, излишек быстро связывается почвой и отложениями или исчезает в результате выщелачивания, становясь недоступным именно в тот период, когда рост организмов наиболее желателен. Многие ошибочно полагают, что если на определенную площадь их сада или пруда рекомендуется 1 кг удобрений (или пестицида), то 2 кг принесут в два раза больше пользы. Этим сторонникам принципа «чем больше - тем лучше» стоило бы понять принцип соотношения субсидии и стресса, отраженный на графике рис. 3.5. Субсидии неизбежно превращаются в источник стресса, если применять их неосторожно. Чрезмерное внесение удобрений в такие экосистемы, как рыборазводные пруды, не только расточительно в смысле достигаемых результатов, но ш может вызвать непредвиденные изменения в системе, а также загрязнить экосистемы, расположенные ниже но течению. Так как различные организмы адаптированы к разным уровням содержания элементов, продолжительное переудобрение приводит к изменениям в видовом составе организмов, причем могут исчезнуть нужные нам и появиться ненужные.[ ...]

С жизнедеятельностью почвенных микроорганизмов связаны многие протекающие в почве процессы - круговороты биогенных элементов, минерализация животных и растительных остатков, обогащение почвы доступными для растений формами азота. С деятельностью микроорганизмов связанО плодородие почвы. Следовательно, почвенные микроорганизмы влияют непосредственно на жизнь растений, а через них - на животных и человека, являясь одной из главных частей наземных экосистем.[ ...]

Пруды и озера особенно удобны для исследований, поскольку на протяжении короткого периода времени круговороты биогенных элементов в них могут рассматриваться как независимые. Хатчинсон (Hutchinson, 1957) и Помрой (Pomeroy, 1970) опубликовали обзоры работ по круговороту фосфора и круговоротам других жизненно важных элементов.[ ...]

Транспирация имеет и свои положительные стороны. Испарение охлаждает листья и в числе других процессов способствует круговороту биогенных элементов. Другие процессы - это транспорт ионов через почву к корням, транспорт ионов между клетками корня, перемещение внутри растения и вымывание из листьев (Kozlowski, 1964, 1968). Некоторые из этих процессов требуют затраты метаболической энергии, что может лимитировать скорость транспорта воды и солей (Fried, Broeshart, 1967). Таким образом, транспирация - это не просто функция открытых физических поверхностей. Лес не обязательно теряет больше воды, чем травянистая растительность. Роль транспирации как энергетической субсидии в условиях влажного леса рассматривалась в гл. 3. Если воздух слишком влажен (относительная влажность приближается к 100%), как бывает в некоторых тропических «облачных» лесах, то деревья отстают в росте и большая часть растительности состоит из эпифитов, по-видимому, из-за отсутствия «транспираци-ониой тяги» (Н. Odum, Pigeon, 1970).[ ...]

Энергия не может передаваться по замкнутым циклам и использоваться повторно, а вещество может.- Вещество (и в том числе биогенные элементы) может проходить через сообщество по «петлям».- Круговорот биогенных элементов никогда не бывает безупречным.- Исследование леса Хаббард-Брук.■-Поступление и вынос биогенных элементов, как правило, низки по сравнению с их количеством, участвующем в круговороте, хотя сера - важное исключение из этого правила (в основном из-за «гкислотных дождей»),- Сведение леса размыкает круговорот и ведет к потере биогенов.- Наземные биомы различаются распределением биогенных элементов между мертвым органическим веществом и живыми тканями,- Течения и осадконакопление - важные■ факторы, влияющие на поток биогенных элементов в водных экосистемах.[ ...]

Все люди потребляют пищу, являясь консумен-тами 1-го и 2-го порядке в пищевых цепях. Они выделяют продукты физиологического обмена, утилизируемые редуцентами, участвующими в круговороте биогенных элементов. Человек - один из 3 млн. известных сейчас биологических видов на Земле.[ ...]

Любую экосистему можно представить в виде ряда блоков, через которые проходят различные материалы и в которых эти материалы могут оставаться на протяжении различных периодов времени (рис. 10.3). В круговоротах минеральных веществ, в экосистеме, как правило, участвуют три активных блока: живые организмы, мертвый органический детрит и доступные неорганические вещества. Два добавочных блока - косвенно доступные неорганические вещества и осаждающиеся органические вещества - связаны с круговоротами биогенных элементов в каких-то периферических участках общего цикла (рис. 10.3), однако обмен между этими блоками и остальной экосистемой замедлен по сравнению с обменом, происходящим между активными блоками.[ ...]

В жизнедеятельности организмов важное значение имеют углерод, азот и фосфор. Именно их соединения необходимы для образования кислорода и органи- еского вещества в процессе фотосинтеза. Значительную роль в круговороте биогенных элементов выполняют донные отложения. Они являются в одном случае источником, в другом - аккумулятором органических и минеральных ресурсов водоема. Поступление их из донных отложений зависит от pH, а также от концентрации этих элементов в воде. При повышении pH и низкой концентрации биогенных элементов увеличивается поступление в воду фосфора, железа и других элементов из донных отложений.[ ...]

Важной задачей изучения структуры и функционирования сообществ (биоценозов) является изучение стабильности сообществ и их способности противостоять неблагоприятным воздействиям. При исследовании экосистем открывается возможность количественного анализа круговорота вещества и изменений потока энергии при переходе с одного пищевого уровня на другой. Такой продукцион-но-энергетический подход на популяционном и биоценотическом уровнях позволяет сравнивать различные естественные и создаваемые человеком экосистемы. Еще одна из задач экологической науки - изучение различных видов связей в наземных и водных экосистемах. Особенно важно изучение биосферы в целом: определение первичной продукции и деструкции по всему земному шару, глобального круговорота биогенных элементов; эти задачи могут быть решены только объединенными усилиями ученых разных стран.[ ...]

Периодическая система в химии, законы движения небесных тел в астрономии и т. д.) Эти схемы проявляются, например, в наличии одних и тех же видов (или одних и тех же форм роста, продуктивностей, скоростей круговорота биогенных элементов и т. д.) в различных местах. Это ведет в свою очередь к созданию гипотез о причинах такой повторяемости. Гипотезы можно затем проверять, проводя дальнейшие наблюдения или ставя эксперименты.[ ...]

Все формы взаимоотношений образуют в совокупности механизм естественного отбора и обеспечивают устойчивость сообщества как формы организации жизни. Сообщество является минимальной Формой организации жизни. способной функционировать практически неограниченное время на определенном участке территории. Только па уровне сообщества может быть осуществлен на определенном участке территории круговорот биогенных элементов, без которого нельзя обеспечить неограниченную продолжительность жизни при ограниченных жизненных ресурсах территории.[ ...]

В результате жизнедеятельности организмов происходит два противоположных и неразделимых процесса. С одной стороны, из простых абиотических компонентов синтезируемся живое органическое вещество, с другой - разрушаются олоквые органические соединения до простых абиотических Ееществ. Эти два процесса обеспечивают обмен веществ между биотическим а абиотическим компонентами экосистем и составляют основное ядро биогеохимического круговорота биогенных элементов.[ ...]

Еще в семидесятые годы XX столетия химик Джеймс Ловлок и микробиолог Линн Маргулис выдвинули теорию сложной регуляции атмосферы Земли биологическими объектами, согласно которой растения и микроорганизмы вместе с физической средой обеспечивают поддержание определенных геохимических условий на Земле, благоприятных для жизни. Это - относительно высокое содержание в атмосфере кислорода и низкое - углекислого газа, определенные влажность и температура воздуха. Особая роль в этой регуляции принадлежит микроорганизмам наземных и водных экосистем, обеспечивающих круговорот биогенных элементов. Общеизвестна регулирующая роль микроорганизмов Мирового океана в поддержании определенного количества углекислого газа в атмосфере Земли и в предотвращении тепличного эффекта.[ ...]

Огромен воспроизводительный потенциал живого вещества. Если бы на какое-то время было остановлено умирание и ничем не ограничивались размножение и рост, то произошел бы «биологический взрыв» космического масштаба: меньше чем за двое суток биомасса микроорганизмов в несколько раз превзошла бы массу земного шара. Этого не происходит из-за лимитирования по веществу; биомасса экосферы поддерживается на относительно постоянном уровне на протяжении сотен миллионов лет. При постоянной накачке потоком солнечной энергии живая природа преодолевает ограниченность питательного материала путем организации круговоротов биогенных элементов. Это обеспечивает высокую продуктивность многих экосистем (см. табл. 2. 1).[ ...]

Антропогенное давление на природу не ограничивается загрязнением. Не меньшее значение имеет эксплуатация природных ресурсов и обусловленные ею нарушения экологических систем. Природопользование стоит очень дорого - намного больше обычной денежной стоимости потребляемых ресурсов. В первую очередь потому, что в экономике природы, как и в экономике человека, не существует бесплатных ресурсов: пространство, энергия, солнечный свет, вода, кислород, какими бы неисчерпаемыми ни казались их запасы на Земле, неукоснительно оплачиваются любой расходующей их системой, оплачиваются полнотой и скоростью возврата, оборота ценностей, замкнутостью материальных круговоротов - биогенных элементов, энергоносителей, пищи, денег, здоровья... Потому что по отношению ко всему этому действует закон ограниченности ресурсов.