Все о тюнинге авто

Дисперсной называют систему в которой одно вещество. Физическая химия дисперсных систем определение дисперсных систем. Классификация дисперсных систем

Урок по химии в 11 классе: «Дисперсные системы и растворы»

Цель - дать понятие о дисперсных системах, их классификация. Раскрыть значение коллоидных систем в жизни природы и общества. Показать относительность деления растворов на истинные и коллоидные.

Оборудование и материалы:

Технологические карты: схема-таблица, лабораторная работа, инструкции.

Оборудование для лабораторных работ:

Реактивы: раствор сахара, раствор хлорида железа (III), смесь воды и речного песка, желатин, клейстер, нефть, раствор хлорида алюминия, раствор поваренной соли, смесь воды и растительного масла.

Химические стаканы

Бумажные фильтры.

Черная бумага.

Фонарики

Ход урока по химии в 11 классе:

Этап урока Особенности этапа Действия учителя Действия учеников
Организационный (2 мин.) Подготовка к уроку Приветствует учеников.

Готовятся к уроку.

Здороваются с учителем.

Введение (5 мин.) Введение в новую тему.

Подводит к теме урока, задачам и «вопросам для себя»

Знакомит с темой урока.

Выводит на экран задачи сегодняшнего урока.

Принимают участие в обсуждении темы. Знакомятся с темой урока и задачами (ПРИЛОЖЕНИЕ №1)

Записывают три вопроса по теме, на которые хотели бы получить ответы.

Теоретическая часть

(15 мин.)

Объяснение новой темы. Дает задания для работы в группах по поиску нового материала (ПРИЛОЖЕНИЕ №3,4) Объединившись в группы, выполняют задания сообразуясь с технологической картой, предоставленной схемой (ПРИЛОЖЕНИЕ №4) и требованиями учителя.
Подведение итогов по теоретической части (8 мин.) Выводы на основе полученных теоретических знаний.

Заранее вывешивает на доске пустые схемы (формат А3) для наглядного заполнения учениками. (ПРИЛОЖЕНИЕ №4)

Совместно с учениками формулирует основные теоретические выводы.

Маркером заполняют схемы, соответствующие той, по которой работали, отчитываются по проведенной работе в группах

Записывают в технологических картах основные выводы.

Практическая часть (10 мин.) Выполнение лабораторной работы, закрепление полученного опыта. Предлагает выполнить лабораторную работу по теме «Дисперсные системы» (ПРИЛОЖЕНИЕ №2) Выполняют лабораторную работу (ПРИЛОЖЕНИЕ №2), заполняют бланки, сообразуясь с инструкцией к лабораторной работе и требованиями учителя.

Обобщение и выводы (5 мин.)

Подведение итогов урока.

Домашнее задание.

Вместе с учениками делает вывод относительно темы.

Предлагает соотнести вопросы, которые были написаны в начале урока с тем, что получили в конце урока.

Подводят итоги, записывают домашнее задание.

Формы и методы контроля:

Технологические схемы для заполнения (ПРИЛОЖЕНИЕ №4).

Лабораторная работа (ПРИЛОЖЕНИЕ №2)

Контроль осуществляется фронтально в устной и письменной форме. По итогам выполнения лабораторной работы карты с лабораторными работами сдаются учителю на проверку.

1. Введение:

Ответьте, чем отличаются мрамор и гранит? А минеральная и дистиллированная вода?

(ответ: мрамор - чистое вещество, гранит - смесь веществ, дистиллированная вода - чистое вещество, минеральная вода - смесь веществ).

Хорошо. А молоко? Это чистое вещество или смесь? А воздух?

Состояние любого чистого вещества описывается очень просто - твердое, жидкое, газообразное.

Но ведь абсолютно чистых веществ в природе не существует. Даже незначительное количество примесей может существенно влиять на свойство веществ: температуру кипения, электро- и теплопроводимость, реакционную способность и т.д.

Получение абсолютно чистых веществ - одна из важнейших задач современной химии, ведь именно чистота вещества определяет возможность проявления им своих индивидуальных средств (демонстрация реактивов с маркировкой).

Следовательно, в природе и практической жизни человека встречаются не отдельные вещества, а их системы.

Смеси разных веществ в различных агрегатных состояниях могут образовывать гетерогенные и гомогенные системы. Гомогенными системами являются растворы, с которыми мы ознакомились на прошлом уроке.

Сегодня мы познакомимся с гетерогенными системами.

2. Тема сегодняшнего урока - ДИСПЕРСНЫЕ СИСТЕМЫ.

Изучив тему урока, вы узнаете:

значение дисперсных систем.

Это, как вы понимаете, наши основные задачи. Они прописаны в ваших технологических картах. Но чтобы наша работа была более продуктивной и мотивированной, я предлагаю вам рядом с основными задачами написать не менее трех вопросов, на которые вы бы хотели найти ответ в процессе данного урока.

3. Теоретическая часть.

Дисперсные системы - что это?

Попробуем вместе вывести определение, исходя из построения слов.

1) Систе́ма (от др.-греч. «система» — целое, составленное из частей; соединение) — множество элементов, находящихся в отношениях и связях друг с другом, которое образует определённую целостность, единство.

2) Дисперсия - (от лат. dispersio — рассеяние) разброс чего-либо, дробление.

Дисперсные системы - гетерогенные (неоднородные) системы, в которых одно вещество в виде очень мелких частиц равномерно распределено в объёме другого.


Если мы опять обратимся к повторению и предыдущему уроку, мы сможем вспомнить, что: растворы состоят из двух компонентов: растворимое вещество и растворитель.

Дисперсные системы, как смеси веществ, имеют аналогичное строение: состоят из мелких частиц, которые равномерно распределены в объеме другого вещества.

Взгляните в свои технологические карты, и попробуйте из разрозненных частей составить две аналогичные схемы: для раствора и для дисперсной системы.

Проверим получившиеся результаты, сверив их с изображением на экране.

Итак, дисперсионная среда в дисперсной системе выполняет роль растворителя, и является т.н. непрерывной фазой, а дисперсная фаза - роль растворенного вещества.

Так как дисперсионная система - гетерогенная смесь, то между дисперсной средой и дисперсионной фазой есть поверхность раздела.

Классификация дисперсных систем.

Можно изучать каждую дисперсную систему по отдельности, но лучше их классифицировать, выделить общее, типичное и это запомнить. Для этого нужно определить, по каким признакам это сделать. Вы объединены в группы, каждой из которых дано задание и прилагающаяся к нему блок-схема.

Руководствуясь предложенной вам литературой, найдите в тексте, предложенный Вам для изучения признак классификации, изучите его.

Создайте кластер (блок-схема), указав признаки и свойства дисперсных систем, приведите к нему примеры. Для помощи в этом вам уже предоставлена пустая блок-схема, которую вам предстоит заполнить.

4. Вывод по теоретическому заданию.

Давайте подведем итоги.

От каждой команды прошу выйти по одному человеку и заполнить схемы, вывешенные на доске.

(ученики подходят и маркером заполняют каждую из схем, после чего отчитыватся по проведенной работе)

Молодцы, теперь давайте закрепим:

Что является основой для классификации дисперсных систем?

На какие виды делятся дисперсные системы?

Какие особенности коллоидных растворов вы знаете?

Как иначе называются гели? Какое значение они имеют? В чем их особенность?

5. Практическая часть.

Теперь, когда вы знакомы с особенностями дисперсных систем и их классификацией, а также определили по какому принципу классифицируются дисперсные системы, предлагаю вам закрепить это знание на практике, выполнив соответствующую лабораторную работу, предложенную вам на отдельном бланке.

Вы объединены в группы по 2 человека. На каждую группу у вас приложен соответствующий бланк с лабораторной работой, а также определенный набор реактивов, которые вам нужно изучить.

Вам выдан образец дисперсной системы.

Ваша задача: пользуясь инструкцией, определить, какая дисперсная система вам выдана, заполнить таблицу и сделать вывод об особенностях дисперсионной системы.

6. Обобщение и выводы.

Итак, на данном уроке мы с вами изучили более углубленно классификацию дисперсных систем, важность их в природе и жизни человека.

Однако следует отметить, что резкой границы между видами дисперсных систем нет. Классификацию следует считать относительной.

А теперь вернемся к поставленным на сегодняшний урок задачам:

что такое дисперсные системы?

какими бывают дисперсные системы?

какими свойствами обладают дисперсные системы?

значение дисперсных систем.

Обратите внимание на вопросы, которые вы записали для себя. В рамке рефлексии отметьте полезность данного урока.

7. Домашнее задание.

Мы постоянно сталкиваемся с дисперсными системами в природе и быту, даже в нашем организме существуют дисперсные системы. Для того, чтобы закрепить знания о значимости дисперсных систем, вам предлагается выполнить домашнее задание в форме эссе/

Выберите дисперсную систему, с которой вы постоянно сталкиваетесь в своей жизни. Напишите эссе на 1-2 страницы: «Какое значение имеет данная дисперсная система в жизни человека? Какие похожие дисперсные системы с похожими функциями еще известны?»

Спасибо за урок.

Дисперсные системы. Определение. Классификация.

Растворы

В предыдущем параграфе мы говорили о растворах . Здесь коротко напомним об этом понятии.


Растворами называют однородные (гомогенные) системы, состоящие из двух и более компонентов.


Гомогенная система – это однородная система, химический состав и физические свойства которой во всех частях одинаковы или меняются непрерывно, без скачков (между частями системы нет поверхностей раздела).


Такое определение раствора не вполне корректно. Оно скорее относится к истинным растворам .


В тоже время существуют ещё коллоидные растворы , которые являются не гомогенными, а гетерогенными , т.е. состоят из разных фаз, разделённых поверхностью раздела.


Для того чтобы достичь большей чёткости в определениях используют другой термин – дисперсные системы .


Перед рассмотрением дисперсных систем немного расскажем об истории их изучения и о появления такого термина как коллоидные растворы .

История вопроса

Ещё в 1845 г. химик Франческо Сельми, исследуя свойства различных растворов, заметил, что биологические жидкости – сыворотка и плазма крови, лимфа и другие – резко отличаются по своим свойствам от обычных истинных растворов, и поэтому такие жидкости были им названы псевдорастворами.

Коллоиды и кристаллоиды

Дальнейшие исследования в этом направлении, проводившиеся с 1861 г. английским учёным Томасом Грэмом, показали, что одни вещества, быстро диффундирующие и проходящие через растительные и животные мембраны, легко кристаллизуются, другие же обладают малой способностью к диффузии, не проходят через мембраны и не кристаллизуются, а образуют аморфные осадки.


Первые Грэм назвал кристаллоидами , а вторые – коллоидами (от греческого слова kolla – клей и eidos – вид) или клееподобными веществами.


В частности, было выявлено, что вещества, способные к образованию аморфных осадков, как, например, альбумин, желатин, гуммиарабик, гидроокиси железа и алюминия и некоторые другие вещества, диффундируют в воде медленно по сравнению со скоростью диффузии таких кристаллических веществ, как поваренная соль, сернокислый магний, тростниковый сахар и др.


В таблице ниже приведены коэффициенты диффузии D для некоторых кристаллоидов и коллоидов при 18С.



Из таблицы видно, что между молекулярным весом и коэффициентом диффузии существует обратная зависимость.


Кромме того у кристаллоидов была обнаружена способность не только быстро диффундировать, но и диализироваться , т.е. проходить через мембранны, в противоположность коллоидам, имеющим больший размер молекул и поэтому медленно диффундирующим и не проникающим через мембраны.


В качестве мембран используют стенки бычьего пузыря, целлофан, плёнки из железисто-синеродистой меди и т.д.


На основании сделанных наблюдений Грэм установил, что все вещества могут быть подразделены на кристаллоиды и коллоиды .

Русские не согласны

Против такого строго разделения химических веществ возражал профессор Киевского университета И.Г. Борщёв (1869). Мнение Борщёва позднее было подтвеждено исследованиями другого русского учёного Веймарна , который доказал, что одно и то же вещество в зависимости от условий может проявлять свойства коллоидов или кристаллоидов.


Так, например, раствор мыла в воде обладает свойствами коллоида , а мыло, растворённое в спирте, проявляет свойства истинных растворов .


Точно также кристаллические соли, например, поваренная соль, растворённая в воде, даёт истинный раствор , а в бензоле – коллоидный раствор и т.п.


Гемоглобин же или яичный альбумин, обладающие свойствами коллоидов, могут быть получены в кристаллическом состоянии.


Д.И. Менделеев полагал, что любое вещество, в зависимости от условий и природы среды, может проявлять свойства коллоида . В настоящее время любое вещество можно получить в коллоидном состоянии.


Таким образом, нет оснований подразделять вещества на два обособленных класса – на кристаллоиды и коллоиды, а можно говорить о коллоидном и кристаллоидном состоянии вещества.


Под коллоидным состоянием вещества подразумевается определённая степень его раздробленности или дисперсности и нахождении коллоидных частиц во взвешенном состоянии в растворителе.


Наука, изучающая физико-химические свойства гетерогенных высокодисперсных и высокомолекулярных систем называется коллоидной химией .

Дисперсные системы

Если одно вещество, находящееся в раздробленном (диспергированном) состоянии, равномерно распределено в массе другого вещества, то такую систему называют дисперсной.


В таких системах раздробленное вещество принято называть дисперсной фазой , а среду, в которой она распределена, - дисперсионной средой .


Так, например, система, представляющая собой взмученную глину в воде, состоит из взвешенных мелких частиц глины – дисперсной фазы и воды – дисперсионной среды.


Дисперсные (раздробленные) системы являются гетерогенными .


Дисперсные системы, в отличие от гетерогенных с относительно крупными, сплошными фазами, называют микрогетерогенными , а коллоиднодисперсные системы называют ультрамикрогетерогенными .

Классификация дисперсных систем

Классификацию дисперсных систем чаще всего производят исходя из степени дисперсности или агрегатного состояния дисперсной фазы и дисперсионной среды.

Классификация по степени дисперсности

Все дисперсные системы по величине частиц дисперсной фазы можно разделить на следующие группы:



Для справки прводим единицы размеров в системе СИ:
1 м (метр) = 102 см (сантиметра) = 103 мм (миллиметра) = 106 мкм (микрометра) = 109 нм (нанометра).

Иногда применяют другие единицы – мк (микрон) или ммк (миллимикрон), причём:
1 нм = 10 -9 м =10 -7 см = 1 ммк;
1 мкм = 10 -6 м = 10 -4 см = 1 мк.


Грубодисперсные системы.


Эти системы содержат в качестве дисперсной фазы наиболее крупные частицы диаметром от 0,1 мк и выше . К этим системам относятся суспензии и эмульсии .


Суспензиями называют системы, в которых твёрдое вещество находится в жидкой дисперсионной среде, например, взвесь крахмала, глины и др. в воде.


Эмульсиями называют дисперсионные системы двух несмешивающихся жидкостей, где капельки одной жидкости во взвешенном состоянии распределены в объёме другой жидкости. Например, масло, бензол, толуол в воде или капельки жира (диаметром от 0,1 до 22 мк) в молоке и др.


Коллоидные системы.


Они имеют размеры частиц дисперсной фазы от 0,1 мк до 1 ммк (или от 10 -5 до 10 -7 см). Такие частицы могут проходить через поры фильтровальной бумаги, но не проникают через поры животных и растительных мембран.


Коллоидные частицы при наличии у них электрического заряда и сольватно-ионных оболочек остаются во взвешенном состоянии и без изменения условий очень долго могут не выпадать в осадок.


Примерами коллоидных систем могут служить растворы альбумина, желатина, гуммиарабика, коллоидные растворы золота, серебра, сернистого мышьяка и др.


Молекулярно-дисперсные системы.


Такие системы имеют размеры частиц, не превышающие 1ммк. К молекулярно-дисперсным системам относятся истинные растворы неэлектролитов.


Ионно-дисперсные системы.


Это растворы различных электролитов, как, например, солей, оснований и т.д., распадающихся на соответствующие ионы, размеры которых весьма малы и выходят далеко за пределы
10 -8 см .


Уточнение по повду представления истинных растворов как дисперсных системах.

Из приведённой здесь классификации видно, что любой раствор (как истинный, так и коллоидный) можно представить как дисперсную среду. Истинные и коллоидные растворы будут различаться размерами частиц дисперсных фаз. Но выше мы писали о гомогенности истинных растворов, а дисперсионные системы гетерогенны. Как разрешить это противоречие?

Если говорить о структуре истинных растворов, то их гомогенность будет относительной. Структурные единицы истинных растворов (молекулы или ионы) значительно меньше частиц коллоидных растворов. Поэтому, можно сказать, что по сравнению с коллоидными растворами и взвесями, истинные растворы гомогенны.

Если же говорить о свойствах истинных растворов, то их нельзя в полной мере называть дисперсными системами, поскольку обязательным существованием дисперсных систем является взаимная нерастворимость диспергированного вещества и дисперсионной среды.

В коллоидных растворах и грубых взвесях дисперсная фаза и дисперсионная среда практически не смешиваются и не реагируют друг с другом химически. Этого совсем нельзя сказать об истинных растворах. В них при растворении вещества смешиваются и даже взаимодействуют друг с другом. По этой причине коллоидные растворы резко отличаются по свойствам от истинных растворов.


Размеры некоторых молекул, частиц, клеток.



По мере изменения размеров частиц от наиболее крупных к мелким и обратно будут соответственно меняться и свойства дисперсных систем. При этом коллоидные системы занимают как бы промежуточное положение между грубыми взвесями и молекулярно-дисперсными системами.

Классификация по агрегатному состоянию дисперсной фазы и дисперсионной среды.

Пены – это дисперсия газа в жидкости, причём в пенах жидкость вырождается до тонких плёнок, разделяющих отдельные пузырьки газа.


Эмульсиями называют дисперсные системы, в которых одна жидкость раздроблена другой, нерастворяющей её жидкостью (например вода в жире).


Суспензиями называют низкодисперсные системы твёрдых частиц в жидкостях.


Сочетания трех видов агрегатного состояния позволяют выделить девять видов дисперсных систем:


Дисперсная фаза
Дисперсионная среда
Название и пример

Газообразная

Газообразная

Дисперсная система не образуется

Газообразная

Газовые эмульсии и пены

Газообразная

Пористые тела: поролон пемза

Газообразная

Аэрозоли: туманы, облака

Эмульсии: нефть, крем, молоко, маргарин, масло

Капилярные системы: Жидкость в пористых телах, грунт, почва

Газообразная

Аэрозоли (пыли, дымы), поршки

Суспензии: пульпа, ил, взвесь, паста

Твёрдые системы: сплавы, бетон

Золи – другое название коллоидных растворов.


Коллоидные растворы иначе называют золями (от латинского solutus – растворённый).


Дисперсные системы с газообразной дисперсионной средой называют аэрозолями . Туманы представляют собой аэрозоли с жидкой дисперсной фазой, а пыль и дым – аэрозоли с твёрдой дисперсной фазой. Дым более высокодисперсная система, чем пыль.


Дисперсные системы с жидкой дисперсионной средой называют лизолями (от греческого «лиос» – жидкость).


В зависимости от растворителя (дисперсионной среды), т.е. воды, спирта бензола или эфира и т.д., различают гидрозоли, алкозоли, бензоли, этерозоли и т.д.


Связнодисперсные системы. Гели.


Дисперсные системы могут быть свободнодисперсными и связнодисперсными в зависимости от отсутствия или наличия взаимодействия между частицами дисперсной фазы.


К свободнодисперсным системам относятся аэрозоли, лизоли, разбавленные суспензии и эмульсии. Они текучи. В этих системах частицы дисперсной фазы не имеют контактов, участвуют в беспорядочном тепловом движении, свободно перемещаются под действием силы тяжести.



На рисунках выше изображены свободно-дисперсные системы :
На рисунках а, б, в изображены корпускулярно-дисперсные системы :
а,б - монодисперсные системы,
в - полидисперсная система,
На рисунке г изображена волокнисто-дисперсная система
На рисунке д изображена плёночно-дисперсная система


– твердообразны. Они возникают при контакте частиц дисперсной фазы, приводящем к образованию структуры в виде каркаса или сетки.


Такая структура ограничивает текучесть дисперсной системы и придаёт ей способность сохранять форму. Подобные структурированные коллоидные системы называются гелями .


Переход золя в гель, происходящий в результате понижения устойчивости золя, называют гелеобразованием (или желатинированием).



На рисунках а, б, в изображены связнодисперсные системы :
а - гель,
б - коагулят с плотной структурой,
в - коагулят с рыхлой - "арочной" структурой
На рисунках г, д изображены капилярнодисперсные системы


Порошки (пасты), пены – примеры связнодисперсных систем.


Почва , образовавшаяся в результате контакта и уплотнения дисперсных частиц почвенных минералов и гумусовых (органических) веществ, также представляет собой связнодисперсную систему.


Сплошную массу вещества могут пронизывать поры и капиляры, образующие капилярнодисперсные системы. К ним относятся, например, древесина, кожа, бумага, картон, ткани .

Лиофильность и лиофобность

Общей характеристикой коллоидных растворов является свойство их дисперсной фазы взаимодействовать с дисперсионной средой. В этом отношении различают два типа золей:


1. Лиофобные (от греческого phobia – ненависть ) и

2. Лиофильные (от греческого philia – любовь ).


У лиофобных золей частицы не имеют сродства к растворителю, слабо с ним взаимодействуют и образуют вокруг себя тонкую оболочку из молекул растворителя.


В частности, если дисперсионной средой является вода, то такие системы называются гидрофобными , например, золи металлов железа, золота, сернистого мышьяка, хлористого серебра и т.д.


В лиофильных системах между диспергированным веществом и растворителем имеется сродство. Частицы дисперсной фазы, в этом случае, приобретают более объёмную оболочку из молекул растворителя.


В случае водной дисперсионной среды такие системы называются гидрофильными , как, например, растворы белка, крахмала, агар-агара, гуммиарабика и др.

Коагуляция коллоидов. Стабилизаторы.
Вещество на границе раздела фаз.

Все жидкости и твёрдые тела ограничены внешней поверхностью, на которой они соприкасаются с фазами другого состава и структуры, например, с паром, другой жидкостью или твёрдым телом.


Свойства вещества в этой межфазовой поверхности , толщиной в несколько поперечников атомов или молекул, отличаются от свойств внутри объёма фазы.


Внутри объёма чистого вещества в твёрдом, жидком или газообразном состоянии любая молекула окружена себе подобными молекулами.


В пограничном слое молекулы находятся во взаимодействии или с другим числом молекул (другим в сравнении с взаимодействием внутри объёма вещества).


Это происходит, например, на границе жидкости или твёрдого тела с их паром. Либо в пограничном слое молекулы вещества взаимодействуют с молекулами другой химической природы, например, на границе двух взаимно малорастворимых жидкостей.


В результате различия в характере взаимодействия внутри объёма фаз и на границе фаз возникают силовые поля , связанные с этой неравномерностью. (Подробнее об этом в параграфе Поверхностное натяжение жидкости.)


Чем больше различие в напряжённости межмолекулярных сил, действующих в каждой из фаз, тем больше потенциальная энергия межфазовой поверхности, кратко называемой поверхностной энергией .


Поверхностное натяжение
Для оценки поверхностной энергии пользуются такой величиной, как удельная свободная поверхностная энергия. Она равна работе затрачиваемой на образование единицы площади новой поверхности раздела фаз (при условии постоянной температуры).
В случае границы двух конденсированных фаз эту величину называют пограничным натяжением .
Когда говорят о границе жидкости с её парами, то эту величину называют поверхностным натяжением .

Коагуляция коллоидов

Все самопроизвольные процессы происходят в направлении уменьшения энергии системы (изобарного потенциала).


Аналогично, на границе раздела фаз самопроизвольно происходят процессы в направлении уменьшения свободной поверхностной энергии.


Свободная энергия тем меньше, чем меньше поверхность раздела фаз.


А поверхность раздела фаз, в свою очередь, связана со степенью дисперсности растворённого вещества. Чем выше дисперсность (мельче частицы дисперсной фазы), тем больше поверхность раздела фаз.


Таким образом, в дисперсных системах всегда существуют силы, приводящие к уменьшению суммарной поверхности раздела фаз , т.е. к укрупнению частиц. Поэтому происходит слияние мелких капель в туманах, дождевых облаках и эмульсиях – агрегация высокодисперсных частиц в более крупные образования.


Всё это приводит к разрушению дисперсных систем: туманы и дождевые облака проливаются дождём, эмульсии расслаиваются, коллоидные растворы коагулируют, т.е. разделяются на осадок дисперсной фазы (коагулят) и дисперсионную среду или в случае вытянутых частиц дисперсной фазы, превращаются в гель.


Способность раздробленных систем сохранять присущую им степень дисперсности называется агрегативной устойчивостью .

Стабилизаторы дисперсных систем

Как было сказано ранее, дисперсные системы принципиально термодинамически неустойчивы . Чем выше дисперсность, тем больше свободная поверхностная энергия, тем больше склонность к самопроизвольному уменьшению дисперсности.


Поэтому для получения устойчивых, т.е. длительно сохраняющихся суспензий, эмульсий, коллоидных растворов, необходимо не только достигнуть заданной дисперсности, но и создать условия для её стабилизации.


Ввиду этого устойчивые дисперсные системы состоят не менее чем из трёх компонентов: дисперсной фазы, дисперсионной среды и третьего компонента – стабилизатора дисперсной системы .


Стабилизатор может иметь как ионную, так и молекулярную, часто высокомолекулярную, природу.


Ионная стабилизация золей лиофобных коллоидов связана с присутствием малых концентраций электролитов, создающих ионные пограничные слои между дисперсной фазой и дисперсионной средой.


Высокомолекулярные соединения (белки, полипептиды, поливиниловый спирт и другие), добавляемые для стабилизации дисперсных систем, называют защитными коллоидами.


Адсорбируясь на границе раздела фаз, они образуют в поверхностном слое сетчатые и гелеобразные структуры, создающие структурно-механический барьер, который препятствует объединению частиц дисперсной фазы.


Структурно-механическая стабилизация имеет решающее значение для стабилизации взвесей, паст, пен, концентрированных эмульсий.

Дисперсные системы

Чистые вещества в природе встречаются очень редко. Смеси разных веществ в различных агрегатных состояниях могут образовывать гетерогенные и гомогенные системы - дисперсные системы и растворы.
Дисперсными называют гетерогенные системы, в которых одно вещество в виде очень мелких частиц равномерно распределено в объеме другого.
То вещество, которое присутствует в меньшем количестве и распределено в объеме другого, называют дисперсной фазой . Она может состоять из нескольких веществ.
Вещество, присутствующее в большем количестве, в объеме которого распределена дисперсная фаза, называют дисперсионной средой . Между ней и частицами дисперсной фазы существует поверхность раздела, поэтому дисперсные системы называют гетерогенными (неоднородными).
И дисперсионную среду, и дисперсную фазу могут представлять вещества, находящиеся в различных агрегатных состояниях - твердом, жидком и газообразном.
В зависимости от сочетания агрегатного состояния дисперсионной среды и дисперсной фазы можно выделить 9 видов таких систем.

По величине частиц веществ, составляющих дисперсную фазу, дисперсные системы делят на грубодисперсные (взвеси) с размерами частиц более 100 нм и тонкодисперсные (коллоидные растворы или коллоидные системы) с размерами частиц от 100 до 1 нм. Если же вещество раздроблено до молекул или ионов размером менее 1 нм, образуется гомогенная система - раствор. Она однородна (гомогенна), поверхности раздела между частицами и средой нет.

Уже беглое знакомство с дисперсными системами и растворами показывает, насколько они важны в повседневной жизни и в природе.

Судите сами: без нильского ила не состоялась бы великая цивилизация Древнего Египта; без воды, воздуха, горных пород и минералов вообще бы не существовала живая планета - наш общий дом - Земля; без клеток не было бы живых организмов и т. д.

Классификация дисперсных систем и растворов


Взвеси

Взвеси - это дисперсные системы, в которых размер частиц фазы более 100 нм. Это непрозрачные системы, отдельные частицы которых можно заметить невооруженным глазом. Дисперсная фаза и дисперсионная среда легко разделяются отстаиванием. Такие системы разделяют на:
1) эмульсии (и среда, и фаза - нерастворимые друг в друге жидкости). Это хорошо известные вам молоко, лимфа, водоэмульсионные краски и т. д.;
2) суспензии (среда - жидкость, а фаза - нерастворимое в ней твердое вещество). Это строительные растворы (например, «известковое молоко» для побелки), взвешенный в воде речной и морской ил, живая взвесь микроскопических живых организмов в морской воде - планктон, которым питаются гиганты-киты, и т. д.;
3) аэрозоли - взвеси в газе (например, в воздухе) мелких частиц жидкостей или твердых веществ. Различают пыли, дымы, туманы. Первые два вида аэрозолей представляют собой взвеси твердых частиц в газе (более крупные частицы в пылях), последний - взвесь мелких капелек жидкости в газе. Например, природные аэрозоли: туман, грозовые тучи - взвесь в воздухе капелек воды, дым - мелких твердых частиц. А смог, висящий над крупнейшими городами мира, также аэрозоль с твердой и жидкой дисперсной фазой. Жители населенных пунктов вблизи цементных заводов страдают от всегда висящей в воздухе тончайшей цементной пыли, образующейся при размоле цементного сырья и продукта его обжига - клинкера. Аналогичные вредные аэрозоли - пыли - имеются и в городах с металлургическими производствами. Дым заводских труб, смоги, мельчайшие капельки слюны, вылетающие изо рта больного гриппом, также вредные аэрозоли.
Аэрозоли играют важную роль в природе, быту и производственной деятельности человека. Скопления облаков, обработка полей химикатами, нанесение лакокрасочных покрытий при помощи пульверизатора, распыление топлив, выработка сухих молочных продуктов, лечение дыхательных путей (ингаляция) - примеры тех явлений и процессов, где аэрозоли приносят пользу. Аэрозоли - туманы над морским прибоем, вблизи водопадов и фонтанов, возникающая в них радуга доставляет человеку радость, эстетическое удовольствие.
Для химии наибольшее значение имеют дисперсные системы, в которых средой является вода и жидкие растворы.
Природная вода всегда содержит растворенные вещества. Природные водные растворы участвуют в процессах почвообразования и снабжают растения питательными веществами. Сложные процессы жизнедеятельности, происходящие в организмах человека и животных, также протекают в растворах. Многие технологические процессы в химической и других отраслях промышленности, например получение кислот, металлов, бумаги, соды, удобрений, протекают в растворах.

Коллоидные системы

Коллоидные системы - это такие дисперсные системы, в которых размер частиц фазы от 100 до 1 нм. Эти частицы не видны невооруженным глазом, и дисперсная фаза и дисперсионная среда в таких системах отстаиванием разделяются с трудом.
Их подразделяют на золи (коллоидные растворы) и гели (студни).
1. Коллоидные растворы, или золи. Это большинство жидкостей живой клетки (цитоплазма, ядерный сок - кариоплазма, содержимое органоидов и вакуолей) и живого организма в целом (кровь, лимфа, тканевая жидкость, пищеварительные соки, гуморальные жидкости и т. д.). Такие системы образуют клеи, крахмал, белки, некоторые полимеры.
Коллоидные растворы могут быть получены в результате химических реакций; например, при взаимодействии растворов силикатов калия или натрия («растворимого стекла») с растворами кислот образуется коллоидный раствор кремниевой кислоты. Золь образуется и при гидролизе хлорида железа (Ш) в горячей воде. Коллоидные растворы внешне похожи на истинные растворы. Их отличают от последних по образующейся «светящейся дорожке» - конусу при пропускании через них луча света.

Это явление называют эффектом Тиндаля . Более крупные, чем в истинном растворе, частицы дисперсной фазы золя отражают свет от своей поверхности, и наблюдатель видит в сосуде с коллоидным раствором светящийся конус. В истинном растворе он не образуется. Аналогичный эффект, но только для аэрозольного, а не жидкого коллоида, вы можете наблюдать в кинотеатрах при прохождении луча света от киноаппарата через воздух кинозала.

Частицы дисперсной фазы коллоидных растворов нередко не оседают даже при длительном хранении из-за непрерывных соударений с молекулами растворителя за счет теплового движения. Они не слипаются и при сближении друг с другом из-за наличия на их поверхности одноименных электрических зарядов. Но при определенных условиях может происходить процесс коагуляции.

Коагуляция - явление слипания коллоидных частиц и выпадения их в осадок - наблюдается при нейтрализации зарядов этих частиц, когда в коллоидный раствор добавляют электролит. При этом раствор превращается в суспензию или гель. Некоторые органические коллоиды коагулируют при нагревании (клей, яичный белок) или при изменении кислотно-щелочной среды раствора.

2. Гели , или студни, представляющие собой студенистые осадки, образующиеся при коагуляции золей. К ним относят большое количество полимерных гелей, столь хорошо известные вам кондитерские, косметические и медицинские гели (желатин, холодец, желе, мармелад, торт «Птичье молоко») и конечно же бесконечное множество природных гелей: минералы (опал), тела медуз, хрящи, сухожилия, волосы, мышечная и нервная ткани и т. д. Историю развития жизни на Земле можно одновременно считать историей эволюции коллоидного состояния вещества. Со временем структура гелей нарушается - из них выделяется вода. Это явление называют синерезисом .

Растворы

Раствором называют гомогенную систему, состоящую из двух и более веществ.
Растворы всегда однофазны, то есть представляют собой однородный газ, жидкость или твердое вещество. Это связано с тем, что одно из веществ распределено в массе другого в виде молекул, атомов или ионов (размер частиц менее 1 нм).
Растворы называют истинными , если требуется подчеркнуть их отличие от коллоидных растворов.
Растворителем считают то вещество, агрегатное состояние которого не изменяется при образовании раствора. Например, вода в водных растворах поваренной соли, сахара, углекислого газа. Если же раствор образовался при смешении газа с газом, жидкости с жидкостью и твердого вещества с твердым, растворителем считают тот компонент, которого больше в растворе. Так, воздух - это раствор кислорода, благородных газов, углекислого газа в азоте (растворитель). Столовый уксус, в котором содержится от 5 до 9% уксусной кислоты, представляет собой раствор этой кислоты в воде (растворитель - вода). Но в уксусной эссенции роль растворителя играет уксусная кислота, так как ее массовая доля составляет 70- 80%, следовательно, это раствор воды в уксусной кислоте.

При кристаллизации жидкого сплава серебра и золота можно получить твердые растворы разного состава.
Растворы подразделяют на:
молекулярные - это водные растворы неэлектролитов - органических веществ (спирта, глюкозы, сахарозы и т. д.);
молекулярно-ионные - это растворы слабых электролитов (азотистой, сероводородной кислот и др.);
ионные - это растворы сильных электролитов (щелочей, солей, кислот - NaOH, K 2 S0 4 , HN0 3 , НС1О 4).
Раньше существовали две точки зрения на природу растворения и растворов: физическая и химическая. Согласно первой растворы рассматривали как механические смеси, согласно второй - как нестойкие химические соединения частиц растворенного вещества с водой или другим растворителем. Последняя теория была высказана в 1887 г. Д. И. Менделеевым, который посвятил исследованию растворов более 40 лет. Современная химия рассматривает растворение как физико-химический процесс, а растворы как физико-химические системы.
Более точное определение раствора таково:
Раствор - гомогенная (однородная) система, состоящая из частиц растворенного вещества, растворителя и продуктов их взаимодействия.

Поведение и свойства растворов электролитов, как вы хорошо знаете, объясняет другая важнейшая теория химии - теория электролитической диссоциации, разработанная С. Аррениусом, развитая и дополненная учениками Д. И. Менделеева, и в первую очередь И. А. Каблуковым.

Вопросы для закрепления:
1. Что такое дисперсные системы?
2. При повреждении кожи (ранке) наблюдается свертывание крови - коагуляция золя. В чем сущность этого процесса? Почему это явление выполняет защитную функцию для организма? Как называют болезнь, при которой свертывание крови затруднено или не наблюдается?
3. Расскажите о значении различных дисперсных систем в быту.
4. Проследите эволюцию коллоидных систем в процессе развития жизни на Земле.

Дисперсионные системы можно разделить по размеру частиц дисперсионной фазы. Если размер частиц составляет меньше одного нм – это молекулярно - ионные системы, от одного до ста нм - коллоидные, и более ста нм - грубодисперсные. Группу молекулярно дисперсных систем представляют растворы. Это однородные системы, которые состоят из двух или более веществ и являются однофазными. К ним относятся газ, твердое вещество или растворы. В свою очередь эти системы можно разделить на подгруппы:
- Молекулярные. Когда органические вещества, такие как глюкоза, соединяются с неэлектролитами. Такие растворы назвали истинными для того, чтобы можно было отличать от коллоидных. К ним относятся растворы глюкозы, сахарозы, спиртовые и другие.
- Молекулярно-ионные. В случае взаимодействия между собой слабых электролитов. В эту группу входят кислотные растворы, азотистые, сероводородные и другие.
- Ионные. Соединение сильных электролитов. Яркие представители - это растворы щелочей, солей и некоторых кислот.

Коллоидные системы

Коллоидные системы - это микрогетерогенные системы, в которых размеры коллоидных частиц варьируют от 100 до 1 нм. Они длительное время могут не выпадать в осадок за счет сольватной ионной оболочки и электрического заряда. При распределении в среде коллоидные растворы заполняют равномерно весь объем и делятся на золи и гели, которые в свою очередь представляют собой осадки в виде студня. К ним относятся раствор альбумина, желатина, коллоидные растворы серебра. Холодец, суфле, пудинги - это яркие коллоидной систем, встречающихся в повседневной жизни.

Грубодисперсные системы

Непрозрачные системы или взвеси, в которых мелкие ингредиенты частицы видны невооруженным глазом. В процессе отстаивания дисперсная фаза легко отделяется от дисперсной среды. Они подразделяются на суспензии, эмульсии, аэрозоли. Системы, в которых в жидкой дисперсионной среде размещаются твердое вещество с более крупными частицами, называются суспензиями. К ним относятся водные растворы крахмала и глины. В отличие от суспензий, эмульсии получаются в результате смешивания двух жидкостей, в которых одна капельками распределяется в другой. Примером эмульсии является смесь масла с водой, капельки жира в молоке. Если мелкие твердые или жидкие частицы распределяется в газе - это аэрозоли. По сути аэрозоль - это суспензия в газе. Одним из представителей аэрозоля на основе жидкости является туман - это большое количество мелких водяных капелек, взвешенных в воздухе. Твердотельный аэрозоль – дым или пыль - множественное скопление мелких твердых частиц также взвешенных в воздухе.

Изучив тему урока, вы узнаете:

  • что такое дисперсные системы?
  • какими бывают дисперсные системы?
  • какими свойствами обладают дисперсные системы?
  • значение дисперсных систем.

Чистые вещества в природе встречаются очень редко. Кристаллы чистых веществ – сахара или поваренной соли, например, можно получить разного размера – крупные и мелкие. Каков бы ни был размер кристаллов, все они имеют одинаковую для данного вещество внутреннюю структуру – молекулярную или ионную кристаллическую решетку.

В природе чаще всего встречаются смеси различных веществ. Смеси разных веществ в различных агрегатных состояниях могут образовывать гетерогенные и гомогенные системы. Такие системы мы будем называть дисперсными.

Дисперсной называется система, состоящая из двух или более веществ, причем одно из них в виде очень маленьких частиц равномерно распределено в объеме другого.

Вещество распадается на ионы, молекулы, атомы, значит “дробится” на мельчайшие частицы. “Дробление” > диспергирование, т.е. вещества диспергируют до разных размеров частиц видимых и невидимых.

Вещество, которое присутствует в меньшем количестве, диспергирует и распределено в объеме другого, называют дисперсной фазой. Она может состоять из нескольких веществ.

Вещество, присутствующее в большем количестве, в объеме которого распределена дисперсная фаза, называют дисперсной средой. Между ней и частицами дисперсной фазы существует поверхность раздела, поэтому дисперсные системы называются гетерогенными (неоднородными).

И дисперсную среду, и дисперсную фазу могут представлять вещества, находящиеся в различных агрегатных состояниях – твердом, жидком и газообразном.

В зависимости от сочетания агрегатного состояния дисперсной среды и дисперсной фазы можно выделить 9 видов таких систем.

Таблица
Примеры дисперсных систем

Дисперсионная среда Дисперсная фаза Примеры некоторых природных и бытовых дисперсных систем
Газ Газ Всегда гомогенная смесь (воздух, природный газ)
Жидкость Туман, попутный газ с капельками нефти, карбюраторная смесь в двигателях автомобилей (капельки бензина в воздухе), аэрозоли
Твердое вещество Пыли в воздухе, дымы, смог, самумы (пыльные и песчаные бури), аэрозоли
Жидкость Газ Шипучие напитки, пены
Жидкость Эмульсии. Жидкие среды организма (плазма крови, лимфа, пищеварительные соки), жидкое содержимое клеток (цитоплазма, кариоплазма)
Твердое вещество Золи, гели, пасты (кисели, студни, клеи). Речной и морской ил, взвешенные в воде; строительные растворы
Твердое вещество Газ Снежный наст с пузырьками воздуха в нем, почва, текстильные ткани, кирпич и керамика, поролон, пористый шоколад, порошки
Жидкость Влажная почва, медицинские и косметические средства (мази, тушь, помада и т. д.)
Твердое вещество Горные породы, цветные стекла, некоторые сплавы

По величине частиц веществ, составляющих дисперсную фазу, дисперсные системы делятся на грубодисперсные (взвеси) с размерами частиц более 100 нм и тонкодисперсные (коллоидные растворы или коллоидные системы) с размерами частиц от 100 до 1 нм. Если же вещество раздроблено до молекул или ионов размером менее 1 нм, образуется гомогенная система – раствор . Она однородна, поверхности раздела между частицами и средой нет.

Дисперсные системы и растворы очень важны в повседневной жизни и в природе. Судите сами: без нильского ила не состоялась бы великая цивилизация Древнего Египта; без воды, воздуха, горных пород и минералов вообще бы не существовала живая планета – наш общий дом – Земля; без клеток не было бы живых организмов и т.д.

ВЗВЕСИ

Взвеси – это дисперсные системы, в которых размер частицы фазы более 100 нм. Это непрозрачные системы, отдельные частицы которых можно заметить невооруженным глазом. Дисперсная фаза и дисперсная среда легко разделяются отстаиванием, фильтрованием. Такие системы разделяются на:

  1. Эмульсии (и среда, и фаза – нерастворимые друг в друге жидкости). Из воды и масла можно приготовить эмульсию длительным встряхиванием смеси. Это хорошо известные вам молоко, лимфа, водоэмульсионные краски и т.д.
  2. Суспензии (среда – жидкость, фаза – нерастворимое в ней твердое вещество).Чтобы приготовить суспензию, надо вещество измельчить до тонкого порошка, высыпать в жидкость и хорошо взболтать. Со временем частица выпадут на дно сосуда. Очевидно, чем меньше частицы, тем дольше будет сохраняться суспензия. Это строительные растворы, взвешенный в воде речной и морской ил, живая взвесь микроскопических живых организмов в морской воде – планктон, которым питаются гиганты – киты, и т.д.
  3. Аэрозоли взвеси в газе (например, в воздухе) мелких частиц жидкостей или твердых веществ. Различаются пыли, дымы, туманы. Первые два вида аэрозолей представляют собой взвеси твердых частиц в газе (более крупные частицы в пылях), последний – взвесь капелек жидкости в газе. Например: туман, грозовые тучи – взвесь в воздухе капелек воды, дым – мелких твердых частиц. А смог, висящий над крупнейшими городами мира, также аэрозоль с твердой и жидкой дисперсной фазой. Жители населенных пунктов вблизи цементных заводов страдают от всегда висящей в воздухе тончайшей цементной пыли, образующейся при размоле цементного сырья и продукта его обжига – клинкера. Дым заводских труб, смоги, мельчайшие капельки слюны, вылетающих изо рта больного гриппом, также вредные аэролози. Аэрозоли играют важную роль в природе, быту и производственной деятельности человека. Скопление облаков, обработка полей химикатами, нанесение лакокрасочных покрытий при помощи пульверизатора, лечение дыхательных путей (ингаляция) – примеры тех явлений и процессов, где аэрозоли приносят пользу. Аэрозоли – туманы над морским прибоем, вблизи водопадов и фонтанов, возникающая в них радуга доставляет человеку радость, эстетическое удовольствие.

Для химии наибольшее значение имеют дисперсные системы, в которых средой является вода и жидкие растворы.

Природная вода всегда содержит растворенные вещества. Природные водные растворы участвуют в процессах почвообразования и снабжают растения питательными веществами. Сложные процессы жизнедеятельности, происходящие в организмах человека и животных, также протекают в растворах. Многие технологические процессы в химической и других отраслях промышленности, например получение кислот, металлов, бумаги, соды, удобрений, протекают в растворах.

КОЛЛОИДНЫЕ СИСТЕМЫ

Коллоидные системы (в переводе с греческого “колла” – клей, “еидос” вид клееподобные) это такие дисперсные системы, в которых размер частиц фазы от 100 до 1 нм. Эти частицы не видны невооруженным глазом, и дисперсная фаза и дисперсная среда в таких системах отстаиванием разделяются с трудом.

Из курса общей биологии вам известно, что частицы такого размера можно обнаружить при помощи ультрамикроскопа, в котором используется принцип рассеивания света. Благодаря этому коллоидная частица в нем кажется яркой точкой на темном фоне.

Их подразделят на золи (коллоидные растворы) и гели (студни).

1. Коллоидные растворы, или золи. Это большинство жидкостей живой клетки (цитоплазма, ядерный сок – кариоплазма, содержимое органоидов и вакуолей). И живого организма в целом (кровь, лимфа, тканевая жидкость, пищеварительные соки и т.д.) Такие системы образуют клеи, крахмал, белки, некоторые полимеры.

Коллоидные растворы могут быть получены в результате химических реакций; например, при взаимодействии растворов силикатов калия или натрия (“растворимого стекла”) с растворами кислот образуется коллоидный раствор кремниевой кислоты. Золь образуется и при гидролизе хлорида железа (III) в горячей воде.

Характерное свойство коллоидных растворов – их прозрачность. Коллоидные растворы внешне похожи на истинные растворы. Их отличают от последних по образующейся “светящейся дорожке” – конусу при пропускании через них луча света. Это явление называют эффектом Тиндаля. Более крупные, чем в истинном растворе, частицы дисперсной фазы золя отражают свет от своей поверхности, и наблюдатель видит в сосуде с коллоидным раствором светящийся конус. В истинном растворе он не образуется. Аналогичный эффект, но только для аэрозольного, а не жидкого коллоида, вы можете наблюдать в лесу и в кинотеатрах при прохождении луча света от киноаппарата через воздух кинозала.

Пропускание луча света через растворы;

а – истинный раствор хлорида натрия;
б – коллоидный раствор гидроксида железа (III).

Частицы дисперсной фазы коллоидных растворов нередко не оседают даже при длительном хранении из-за непрерывных соударений с молекулами растворителя за счет теплового движения. Они не слипаются и при сближении друг с другом из-за наличия на их поверхности одноименных электрических зарядов. Это объясняется тем, что вещества в коллоидном, т.е., в мелкораздробленном, состоянии обладают большой поверхностью. На этой поверхности адсорбируются либо положительно, либо отрицательно заряженные ионы. Например, кремниевая кислота адсорбирует отрицательные ионы SiO 3 2- , которых в растворе много вследствие диссоциации силиката натрия:

Частицы же с одноименными зарядами взаимно отталкиваются и поэтому не слипаются.

Но при определенных условиях может происходить процесс коагуляции. При кипячении некоторых коллоидных растворов происходит десорбция заряженных ионов, т.е. коллоидные частицы теряют заряд. Начинают укрупняться и оседают. Тоже самое наблюдается при приливании какого-либо электролита. В этом случае коллоидная частица притягивает к себе противоположно заряженный ион и ее заряд нейтрализуется.

Коагуляция – явление слипания коллоидных частиц и выпадения их в осадок – наблюдается при нейтрализации зарядов этих частиц, когда в коллоидный раствор добавляют электролит. При этом раствор превращается в суспензию или гель. Некоторые органические коллоиды коагулируют при нагревании (клей, яичный белок) или при изменении кислотно-щелочной среды раствора.

2. Гели или студни представляют собой студенистые осадки, образующиеся при коагуляции золей. К ним относят большое количество полимерных гелей, столь хорошо известные вам кондитерские, косметические и медицинские гели (желатин, холодец, мармелад, торт “Птичье молоко”) и конечно же бесконечное множество природных гелей: минералы (опал), тела медуз, хрящи, сухожилия, волосы, мышечная и нервная ткани и т.д. Историю развития на Земле можно одновременно считать историей эволюции коллоидного состояния вещества. Со временем структура гелей нарушается (отслаивается) – из них выделяется вода. Это явление называют синерезисом.

Выполните лабораторные опыты по теме (групповая работа, в группе по 4 человека).

Вам выдан образец дисперсной системы. Ваша задача: определить какая дисперсная система вам выдана.

Выдано учащимся: раствор сахара, раствор хлорода железа (III), смесь воды и речного песка, желатин, раствор хлорида алюминия, раствор поваренной соли, смесь воды и растительного масла.

Инструкция по выполнению лабораторного опыта

  1. Рассмотрите внимательно выданный вам образец (внешнее описание). Заполните графу № 1 таблицы.
  2. Перемешайте дисперсную систему. Понаблюдайте за способностью осаждаться.

Осаждается или расслаивается в течении несколько минут или с трудом в течении продолжительного времени, или не осаждаются. Заполните графу № 2 таблицы.

Если вы не наблюдаете осаждение частиц, исследуйте его на процесс коагуляции. Отлейте немного раствора в две пробирки и добавьте в одну 2–3 капли желтой кровяной соли и в другую 3–5 капель щелочи, что наблюдаете?

  1. Пропустите дисперсную систему через фильтр. Что наблюдаете? Заполните графу № 3 таблицы. (Отфильтруйте немного в пробирку).
  2. Пропустите через раствор луч света фонарика на фоне темной бумаги. Что наблюдаете? (можно наблюдать эффект Тиндаля)
  3. Сделайте вывод: что это за дисперсная система? Что является дисперсной средой? Что является дисперсной фазой? Каковы размеры частиц в нем? (графа №5).
Синквейн ("синквейн" – от фр. слова, означающего "пять") – это стихотворение из 5 строк по определенной теме. Для сочинения синквейна дается 5 минут, после чего написанные стихотворения можно озвучить и обсудить в парах, группах или на всю аудиторию.

Правила написания синквейна :

  1. В первой строчке одним словом (обычно существительным) называется тема.
  2. Вторая строчка – это описание этой темы двумя прилагательными.
  3. Третья строчка – это три глагола (или глагольные формы), называющие самые характерные действия предмета.
  4. Четвертая строчка – это фраза из четырех слов, показывающая личное отношение к теме.
  5. Последняя строка – это синоним темы, подчеркивающий её суть.

Лето 2008 г. Вена. Шенбрунн.

Лето 2008 г. Нижегородская область.

Облака и их роль в жизни человека

Вся окружающая нас природа – организмы животных и растений, гидросфера и атмосфера, земная кора и недра представляют собой сложную совокупность множества разнообразных и разнотипных грубодисперсных и коллоидных систем.
Развитие коллоидной химии связано с актуальными проблемами различных областей естествознания и техники.
На представленной картинке представлены облака – один из видов аэрозолей коллоидных дисперсных систем. В изучении атмосферных осадков метеорология опирается на учение об аэродисперсных системах.
Облака нашей планеты представляют собой такие же живые сущности, как вся природа, которая нас окружает. Они имеют огромное значение для Земли, так как являются информационными каналами. Ведь облака состоят из капиллярной субстанции воды, а вода, как известно, очень хороший накопитель информации. Круговорот воды в природе приводит к тому, что информация о состоянии планеты и настроении людей накапливается в атмосфере, и вместе с облаками передвигается по всему пространству Земли.
Облака – удивительное творение природы, которое доставляет человеку радость, эстетическое удовольствие.

Краснова Мария,
11-й «Б» класс

Р.S.
Огромное спасибо Першиной О.Г., учителю химии МОУ гимназия “Дмитров”, на уроке работали с найденной презентацией, и она дополнялась нашими примерами.