Все о тюнинге авто

Самодельный блок питания с эффективной защитой. Несколько защитных устройств блоков питания

Данная схема представляет собой простейший блок питания на транзисторах, оборудованный защитой от короткого замыкания (КЗ). Его схема представлена на рисунке.

Основные параметры:

  • Выходное напряжение - 0..12В;
  • Максимальный выходной ток - 400 мА.

Схема работает следующим образом. Входное напряжение сети 220В преобразуется трансформатором в 16-17В, затем выпрямляется диодами VD1-VD4. Фильтрация пульсаций выпрямленного напряжения осуществляется конденсатором С1. Далее выпрямленное напряжение поступает на стабилитрон VD6, который стабилизирует напряжение на своих выводах до 12В. Остаток напряжения гасится на резисторе R2. Далее осуществляется регулировка напряжения переменным резистором R3 до требуемого уровня в пределах 0-12В. Затем следует усилитель тока на транзисторах VT2 и VT3, который усиливает ток до уровня 400 мА. Нагрузкой усилителя тока служит резистор R5. Конденсатор С2 дополнительно фильтрует пульсации выходного напряжения.

Защита работает так. При отсутствии КЗ на выходе напряжение на выводах VT1 близко к нулю и транзистор закрыт. Цепь R1-VD5 обеспечивает смещение на его базе на уровне 0,4-0,7 В (падение напряжения на открытом p-n переходе диода). Этого смещения достаточно для открытия транзистора при определённом уровне напряжения коллектор-эмиттер. Как только на выходе происходит короткое замыкание, напряжение коллектор-эмиттер становится отличным от нулевого и равным напряжению на выходе блока. Транзистор VT1 открывается, и сопротивление его коллекторного перехода становится близким к нулю, а, значит, и на стабилитроне. Таким образом, на усилитель тока поступает нулевое входное напряжение, через транзисторы VT2, VT3 будет протекать очень маленький ток, и они не выйдут из строя. Защита отключается сразу же при устранении КЗ.

Детали

Трансформатор может быть любой с площадью сечения сердечника 4 см 2 и более. Первичная обмотка содержит 2200 витков провода ПЭВ-0,18, вторичная - 150-170 витков провода ПЭВ-0,45. Подойдёт и готовый трансформатор кадровой развёртки от старых ламповых телевизоров серии ТВК110Л2 или подобный. Диоды VD1-VD4 могут быть Д302-Д305, Д229Ж-Д229Л или любые на ток не менее 1 А и обратное напряжение не менее 55 В. Транзисторы VT1, VT2 могут быть любые низкочастотные маломощные, например, МП39-МП42. Можно использовать и кремниевые более современные транзисторы, например, КТ361, КТ203, КТ209, КТ503, КТ3107 и другие. В качестве VT3 - германиевые П213-П215 или более современные кремниевые мощные низкочастотные КТ814, КТ816, КТ818 и другие. При замене VT1 может оказаться, что защита от КЗ не работает. Тогда следует последовательно с VD5 включить ещё один диод (или два, если потребуется). Если VT1 будет кремниевый, то и диоды лучше применять кремниевые, например, КД209(А-В).

В заключение стоит заметить, что вместо указанных на схеме p-n-p транзисторов можно применять и аналогичные по параметрам транзисторы n-p-n (не вместо какого-либо из VT1-VT3, а вместо всех из них). Тогда нужно будет поменять полярности включения диодов, стабилитрона, конденсаторов, диодного моста. На выходе, соответственно, полярность напряжения будет другая.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
VT1, VT2 Биполярный транзистор

МП42Б

2 МП39-МП42, КТ361, КТ203, КТ209, КТ503, КТ3107 Поиск в Fivel В блокнот
VT3 Биполярный транзистор

П213Б

1 П213-П215, КТ814, КТ816, КТ818 Поиск в Fivel В блокнот
VD1-VD4 Диод

Д242Б

4 Д302-Д305, Д229Ж-Д229Л Поиск в Fivel В блокнот
VD5 Диод

КД226Б

1 Поиск в Fivel В блокнот
VD6 Стабилитрон

Д814Д

1

Практически каждый начинающий радиолюбитель стремится вначале своего творчества сконструировать сетевой блок питания, чтобы впоследствии использовать его для питания различных экспериментальных устройств. И конечно, хотелось бы, чтобы этот блок питания "подсказывал" об опасности выхода из строя отдельных узлов при ошибках или неисправностях монтажа.

На сегодняшний день существует множество схем, в том числе и с индикацией короткого замыкания на выходе. Подобным индикатором в большинстве случаев обычно служит лампа накаливания, включенная в разрыв нагрузки. Но подобным включением мы увеличиваем входное сопротивление источника питания или, проще говоря, ограничиваем ток, что в большинстве случаев, конечно, допустимо, но совсем не желательно.

Схема, изображенная на рис.1, не только сигнализирует о коротком замыкании, абсолютно не влияя на выходное сопротивление устройства, но и автоматически отключает нагрузку при закорачивании выхода. Кроме того, светодиод HL1 напоминает, что устройство включено в сеть, a HL2 светится при перегорании плавкого предохранителя FU1, указывая на необходимость его замены.

Электрическая принципиальная схема самодельного блока питания с защитой от коротких замыканий

Рассмотрим работу самодельного блока питания . Переменное напряжение, снимаемое со вторичной обмотки Т1, выпрямляется диодами VD1...VD4, собранными по мостовой схеме. Конденсатеры С1 и С2 препятствуют проникновению в сети высокочастотных помех, а оксидный конденсатор С3 сглаживает пульсации напряжения, поступающего на вход компенсационного стабилизатора, собранного на VD6, VT2, VT3 и обеспечивающего на выходе стабильное напряжение 9 В.

Напряжение стабилизации можно изменить, подбирая стабилитрон VD6, например, при КС156А оно составит 5 В, при Д814А - 6 В, при ДВ14Б - В В, при ДВ14Г -10 В, при ДВ14Д -12 В. При желании выходное напряжение можно сделать регулируемым, для этого между анодом и катодом VD6 включают переменный резистор сопротивлением 3-5 кОм, а базу VT2 подключают к движку этого резистора.

Рассмотрим работу защитного устройстваблока питания . Узел защиты от КЗ в нагрузке состоит из германиевого п-р-п транзистора VT1, электромагнитного реле К1, резистора R3 и диода VD5. Последний в данном случае выполняет функцию стабистора, поддерживающего на базе VT1 неизменное напряжение около 0,6 - 0,7 В относительно общего.

В обычном режиме работы стабилизатора транзистор узла защиты надежно закрыт, так как напряжение на его базе относительно эмиттера отрицательное. При возникновении короткого замыкания эмиттер VT1, как и эмиттер регулирующего VT3, оказывается соединенным с общим минусовым проводом выпрямителя.

Другими словами, напряжение на его базе относительно эмиттера становится положительным, вследствие чего VT1 открывается, срабатывает К1 и своими контактами отключает нагрузку, светится светодиод HL3. После устранения короткого замыкания напряжение смещения на эмиттерном переходе VT1 снова становится отрицательным и он закрывается, реле К1 обесточивается, подключая нагрузку к выходу стабилизатора.

Детали для изготовления блока питания. Электромагнитное реле любое с возможно меньшим напряжением срабатывания. В любом случае должно соблюдаться одно непременное условие: вторичная обмотка Т1 должна выдавать напряжение, равное сумме напряжений стабилизации и срабатывания реле, т.е. если напряжение стабилизации, как в данном случае 9 В, а U сраб реле 6 В, то на вторичной обмотке должно быть не менее 15 В, но и не превышать допустимое на коллекторе-эмиттере применяемого транзистора. В качестве Т1 на опытном образце автор использовал ТВК-110Л2. Печатная плата устройства изображена на рис.2.

Печатная плата блока питания

Прус С. В.

У каждого радиолюбителя, регулярно занимающегося конструированием электронных устройств, думаю, имеется дома регулируемый блок питания. Штука действительно удобная и полезная, без которого, испробовав его в действии, обходиться становится трудно. Действительно, нужно ли нам проверить, например светодиод, то потребуется точно выставлять его рабочее напряжение, так как при значительном превышении подаваемого напряжения на светодиод, последний может просто сгореть. Также и с цифровыми схемами, выставляем выходное напряжение по мультиметру 5 вольт, или любое другое нужное нам и вперед.

Многие начинающие радиолюбители, сначала собирают простой регулируемый блок питания, без регулировки выходного тока и защиты от короткого замыкания. Так было и со мной, лет 5 назад собрал простой БП с регулировкой только выходного напряжения от 0,6 до 11 вольт. Его схема приведена на рисунке ниже:


Но несколько месяцев назад решил провести апгрейд этого блока питания и дополнить его схему небольшой схемкой защиты от короткого замыкания. Эту схему нашел в одном из номеров журнала Радио. При более детальном изучении выяснилось, что схема во многом напоминает приведенную выше принципиальную схему, собранного мной ранее блока питания. При коротком замыкании в питаемой схеме светодиод индикации КЗ гаснет, сигнализируя об этом, и выходной ток становится равен 30 миллиампер. Было решено, взяв часть этой схемы дополнить свою, что и сделал. Оригинал, схему из журнала Радио, в которую входит дополнение, привожу на рисунке ниже:


На следующем рисунке показывается часть этой схемы, которую нужно будет собрать.


Номинал некоторых деталей, в частности резисторов R1 и R2, нужно пересчитать в сторону увеличения. Если у кого-то остались вопросы, куда подсоединять выходящие провода с этой схемы, приведу следующий рисунок:


Еще дополню, что в собираемой схеме, вне зависимости, будет это первая схема, или схема из журнала Радио необходимо поставить на выходе, между плюсом и минусом резистор 1 кОм. На схеме из журнала Радио это резистор R6. Дальше осталось протравить плату и собрать все вместе в корпусе блока питания. Зеркалить платы в программе Sprint Layout не нужно. Рисунок печатной платы защиты от короткого замыкания:


Примерно месяц назад мне попалась на глаза схема приставки регулятора выходного тока, которую можно было использовать совместно с этим блоком питания. взял с этого сайта. Тогда собрал эту приставку в отдельном корпусе и решил подключать её по мере необходимости для зарядки аккумуляторов и тому подобных действий, где важен контроль выходного тока. Привожу схему приставки, транзистор кт3107 в ней заменил на кт361.


Но впоследствии пришла в голову мысль соединить, для удобства, все это в одном корпусе. Открыл корпус блока питания и посмотрел, места осталось маловато, переменный резистор не поместится. В схеме регулятора тока используется мощный переменный резистор, имеющий довольно большие габариты. Вот как он выглядит:


Тогда решил просто соединить оба корпуса на винты, сделав соединение между платами проводами. Также поставил тумблер на два положения: выход с регулируемым током и нерегулируемым. В первом случае, выход с основной платы блока питания соединялся с входом регулятора тока, а выход регулятора тока шел на зажимы на корпусе блока питания, а во втором случае, зажимы соединялись напрямую с выходом с основной платы блока питания. Коммутировалось все это шести контактным тумблером на 2 положения. Привожу рисунок печатной платы регулятора тока:


На рисунке печатной платы, R3.1 и R3.3 обозначены выводы переменного резистора первый и третий, считая слева. Если кто-то захочет повторить, привожу схему подключения тумблера для коммутации:


Печатные платы блока питания, схемы защиты и схемы регулировки тока прикрепил в архиве . Материал подготовил AKV.

Представленные ниже радиолюбительские схемы защиты блоков питания или зарядных устройств могут совместно работать практически с любыми источниками - сетевыми, импульсными и аккумуляторными батареями. Схемотехническая реализация этих конструкция относительна проста и доступна для повторения даже начинающим радиолюбителем.

Силовая часть выполнена на мощном полевом транзистор. В процессе работы он не перегревается, поэтому теплоотвод можно не использовать. Устройство одновременно является отлично защитой от переплюсовки, перегрузки и короткого замыкания в выходной цепи, ток срабатывания можно подобрать подбором резистора шунта, в нашем случае он составляет 8 Ампер, использовано 6 параллельно подключенных сопротивлений мощностью 5 ватт 0,1 Ом. Шунт можно сделать также из сопротивления мощностью 1-3 ватт.



Более точно защиту можно подстроить путем регулировки сопротивления подстроечного резистора. При коротком замыкании и перегрузке на выходе, защита почти сразу сработает, отключив блок питания. О сработавшей защите подскажет светодиод. Даже при замыкании выхода на 30-40 секунд, полевик остается почти холодным. Его тип не критичен, подойдут практически любые силовые ключи с током 15-20 Ампер на рабочее напряжение 20-60 Вольт. Отлично подойдут транзисторы из серии IRFZ24, IRFZ40, IRFZ44, IRFZ46, IRFZ48 или более мощные.

Данный вариант схемы будет полезен автолюбителям в роли защиты зарядного устройства для свинцовых аккумуляторов, если вдруг перепутаете полярность подсоединения, то с ЗУ ничего страшного не случится.

Благодаря быстрому срабатыванию защиты, ее можно отлично использовать для импульсных схем, при коротком замыкании защита сработает гораздо быстрее, чем перегорят силовые ключи импульсного БП. Конструкция подойдет также для импульсных инверторов, в роли токовой защиты.

Защита от короткого замыкания на MOSFET-транзисторе

Если в ваших блоках питания и ЗУ для переключения нагрузки используется полевой транзистор (MOSFET), то вы можете легко добавить в такую схему защиту от короткого замыкания или перегрузки. В данном примере мы будем применять внутреннее сопротивление RSD, на котором возникает падение напряжения, пропорциональное току, идущему через MOSFET.

Напряжение, следующее через внутренний резистор, может регистрироваться с помощью компаратора или даже транзистора, переключающегося при напряжении уровнем от 0.5 В, т.е, можно отказаться от применения токочувствительного сопротивления (шунта), на котором обычно возникает излишек напряжения. За компаратором можно следить с помощью микроконтроллера. В случае КЗ или перегрузки программно можно запустить ШИМ-регулирование, сигнализацию, аварийную остановку). Возможно также подсоединение выхода компаратора к затвору полевого транзистора, если при возникновении КЗ нужно сразу же отключить полевик.

На сегодняшний день существует множество схем, в том числе и с индикацией короткого замыкания (КЗ) на выходе. Подобным индикатором в большинстве случаев обычно служит лампа накаливания, включенная в разрыв нагрузки. Но подобным включением мы увеличиваем входное сопротивление источника питания или, проще говоря, ограничиваем ток, что в большинстве случаев, конечно, допустимо, но совсем не желательно. Схема, изображенная на рис.1, не только сигнализирует о КЗ, абсолютно не влияя на выходное сопротивление устройства, но и автоматически отключает нагрузку при закорачивании выхода. Кроме того, светодиод HL1 напоминает, что устройство включено в сеть, а HL2 светится при перегорании плавкого предохранителя FU1, указывая на необходимость его замены.

Незаменимой частью множественных радиоустройств является стабилизированный блок питания , собранный, как правило, на транзисторах. В процессе работы таких устройств может случится перегрузка блока питания . Особенно частенько это случается с лабораторными блоками, предназначенными для отработки и налаживания самых различных конструкций.


Такие нарушения нормального режима работы устройства нередко приводят к повреждениям его элементов, чаще всего - регулирующего транзистора стабилизатора. При пробое этого транзистора к нагрузке окажется приложенным полное выходное напряжение выпрямителя, часто небезопасное и для нее.


Плавкие предохранители мало спасают от повреждения блока питания и нагрузки, так как нередко регулирующий транзистор стабилизатора выходит из строя раньше, чем перегорит предохранитель. Надежную защиту в этих случаях можно обеспечить с помощью специального электронного защитного устройства.


В помещенной ниже подборке заметок описаны различные по сложности устройства, предложенные радиолюбителями-читателями. Выпрямителям и стабилизаторам в заметках уделено минимум внимания.


Защитные устройства разделяются на две группы: встроенные в стабилизатор и воздействующие на его регулирующий транзистор (например, устройство В. Захарченко) и автономные, содержащие отдельный ключевой элемент (устройство В. Мельникова). Устройства второй группы чаще называют электронными предохранителями. Защитное устройство Н. Цесарука занимает промежуточное положение между этими группами.


Некоторые виды нагрузки имеют свойство сильно перегружать блок питания в момент включения в сеть, вызывая ложное срабатывание защитного устройства. Отмечены также случаи, когда в момент включения усилителя НЧ из-за резкого всплеска тока через громкоговоритель усилителя выходили из строя динамические головки громкоговорителей (разрушались их звуковые катушки). Защитное устройство Л. Выскубова и В. Макарова позволяет устранить эти недостатки.


Кажущаяся сложность защитного устройства Н. Цесарука окупается высокими эксплуатационными характеристиками, в частности быстродействием и надежностью защиты.


Нередко радиолюбители оснащают блоки питания только лампами накаливания или электронно-оптическими индикаторами, сигнализирующими о перегрузке. Подобные устройства целесообразны в большинстве случаев, иногда же индикатора вообще бывает достаточно, чтобы вовремя зафиксировать перегрузку блока питания и отключить его от сети. Поэтому редакция сочла возможным включить в подборку описания и этих индикаторов.


Защитное устройство стабилизатора блока питания, схема которого показана на рис. 1, обладает высоким быстродействием и хорошей "релейностью”, то есть малым влиянием на характеристики блока в рабочем режиме и надежным закрыванием регулирующего транзистора Т2 в режиме перегрузки. Защитное устройство состоит из тринистора Д1, диодов Д2 и Д3 и резисторов R2 и R3. Оно работает следующим образом. В рабочем режиме тринистор Д1 закрыт и напряжение на базе транзистора Т1 равно напряжению стабилизации цепочки стабилитронов Д4, Д5. При перегрузке ток через резистор R2 и падение напряжения на нем достигают величины, достаточной для открывания тринистора Д1 по цепи управляющего электрода. Открывшийся тринистор замыкает цепочку стабилитронов Д4, Д5. что приводит к закрыванию транзисторов Т1 и Т2.




Для того чтобы восстановить рабочий режим после устранения причины перегрузки, нужно нажать и отпустить кнопку Кн1. При этом тринистор закроется, а транзисторы Т1 и Т2 вновь откроются. Резистор R3 и диоды Д2, Д3 защищают управляющий переход тринистора Д1 от перегрузок по току и напряжению соответственно.


Стабилизатор обладает следующими основными параметрами: входное напряжение 28-38 В, выходное стабилизированное напряжение - 24 В; коэффициент стабилизации - около 30; ток срабатывания защиты - 2 А. быстродействие - несколько микросекунд.


Транзистор Т2 можно заменить на КТ802А, КТ805Б, а Т1 - на П307- П309. КТ601, КТ602 с любым буквенным индексом. Тринистор Д1 может быть любым из серии КУ201, кроме КУ201А и КУ201Б.


В. Захарченко г. Киев


* * *


Стабилизатор блока питания , схема которого представлена на рис. 2, может быть защищен от перегрузок и коротких замыканий нагрузки введением всего двух деталей - тринистора Д2 и резистора R5. Защитное устройство срабатывает, когда ток нагрузки превысит определенное пороговое значение, определяемое сопротивлением резистора R5. В этот момент падение напряжения на этом резисторе достигает напряжения открывания тринистора Д2 (около 1 В), он открывается и напряжение на базе транзистора Т1 уменьшается почти до нуля. Поэтому транзистор Т1, а вслед за ним и Т2 закрываются, отключая цепь нагрузки.




Для возвращения стабилизатора в исходный режим нужно кратковременно нажать на кнопку Кн1. Резистор R3 служит для ограничения тока базы транзистора Т2. Резистор R5 наматывают медным проводом.


Номинальное входное напряжение стабилизатора - 40 В, выходное можно регулировать от 27 В почти до нуля. Максимальный ток нагрузки - 2 А.


Вместо транзистора П701А можно использовать КТ801А, КТ801Б. Транзистор Т2 можно заменить на КТ803А, КТ805А, КТ805Б, П702, П702А.


А. Бизер г. Херсон


Примечание редакции. Выходное сопротивление стабилизатора можно уменьшить на величину сопротивления резистора R5, если изменить место его включения (как показано на рис. 2 штриховыми линиями). Чтобы избежать случаев ложного срабатывания защиты от зарядного тока конденсатора С2 при включении блока питания в сеть, этот конденсатор лучше изъять из устройства.


* * *


Особенностью электронного предохранителя стабилизатора, схема которого изображена на рис. 3, является возможность регулирования тока срабатывания. Предохранитель собран на транзисторах Т1 и Т2 (в его состав входят также резисторы R1-R4, стабилитрон Д1, переключатель В1 и лампа накаливания Л1). Устанавливают требуемое значение тока срабатывания переключателем В1. Работает устройство следующим образом. В рабочем режиме за счет базового тока, протекающего через резистор R1 (R2 или R3), транзистор Т1 открыт и падение напряжения на нем невелико. Поэтому ток в базовой цепи транзистора Т2 очень мал, стабилитрон Д1, включенный в прямом направлении, и транзистор Т2 закрыты.




С увеличением тока нагрузки стабилизатора падение напряжения на транзисторе Т1 увеличивается. В некоторый момент стабилитрон Д1 открывается, вслед за ним открывается транзистор Т2, что приводит к закрыванию транзистора Т1. Теперь на этом транзисторе падает почти все входное напряжение и ток через нагрузку резко уменьшается до нескольких десятков миллиампер. Лампа Л1 загорается, указывая на срабатывание предохранителя. Возврат его в исходный режим производят кратковременным отключением от сети.


Входное напряжение устройства, собранного по схеме на рис. 3, равно 50±5 В, выходное стабилизированное можно регулировать в пределах примерно от 1 до 27 В. Коэффициент стабилизации - около 20. Для повышения температурной стабильности выходного напряжения последовательно со стабилитроном Д3 включен еще один стабилитрон Д2 в прямом направлении.




Каскад на транзисторе Т1 сравнивает напряжение на резисторе R2, пропорциональное току нагрузки стабилизатора, с напряжением на стабилитроне Д2. включенном в прямом направлении. При перегрузке стабилизатора напряжение на резисторе R2 становится больше напряжения на стабилитроне и транзистор Т1 открывается. Благодаря действию положительной обратной связи между цепями коллектора и базы этого транзистора в системе транзистор Т1 - реле Р1 развивается блокинг-процесс.


Длительность импульса - около 30 мс (в случае применения реле РМУ, паспорт РС4.533.360СП). Во время импульса напряжение на коллекторе транзистора Т1 резко уменьшается. Это падение напряжения через диод Т3 передается на базу регулирующего транзистора Т2 стабилизатора (напряжение на базе транзистора становится положительным относительно эмиттера), транзистор закрывается и ток через цепь нагрузки резко уменьшается.


Одновременно с открыванием транзистора Т1 начинает увеличиваться ток через коллекторную обмотку реле Р1, и примерно через 10 мс оно срабатывает, самоблокируется и отключает цепь нагрузки контактами P1/1. По окончании блокинг-процесса транзистор Т1 закрывается, реле Р1 остается включенным, а стабилизатор - обесточенным. Для восстановления исходного режима на короткое время отключают блок питания от сети. Быстродействие электронной защиты зависит от частотных свойств транзисторов Т1 и Т2 и скорости нарастания тока через коллекторную обмотку реле P1 (то есть от собственной емкости и индуктивности рассеяния обмоток реле) и не превышает нескольких десятков микросекунд. Защитное устройство срабатывает при токе нагрузки, равном 0,4 А.


Стабилизатор блока обладает коэффициентом стабилизации около 50. Номинальное входное напряжение 20 В, выходное - 15 В. Порог срабатывания защиты можно сделать регулируемым, для чего параллельно резистору R2 включают переменный резистор сопротивлением 10-20 Ом, к среднему выводу которого и подключают провод от вывода к базовой обмотки реле Р1.


Как только ток нагрузки достигает порогового значения, падение напряжения на резисторах R5 и R6 увеличивается настолько, что яркость свечения светодиода оптрона становится достаточной для открывания фототиристора. Его сопротивление становится очень малым, и на базу транзистора Т1 поступает положительное напряжение, закрывающее электронный ключ. При этом напряжение на нагрузке резко уменьшается, лампа Л1 гаснет. Ток, протекающий через фототиристор и резисторы R4 и R1, достаточен для удержания оптрона во включенном состоянии


Для того чтобы вернуть устройство в исходное состояние, нужно на короткое время нажать на кнопку Кн1. При этом фототиристор оптрона оказывается замкнутым накоротко и закрывается, электронный ключ поддерживается закрытым, а конденсатор С1 разряжается. В первый момент после отпускания кнопки электронный ключ остается закрытым и плавно открывается по мере заряда конденсатора С1 через резистор R1 Напряжение на нагрузке плавно увеличивается до номинального (описанный процесс происходит и при включении блока питания в сеть). Этим полностью устраняется опасность первоначального броска тока через нагрузку, который нередко является причиной выхода из строя элементов нагрузки и блока питания. Отсутствие броска тока, кроме этого, позволяет избежать ложных срабатываний защитного устройства.


Диоды Д1 и Д2 ускоряют процесс перехода транзисторов электронного ключа от режима насыщения к закрыванию при возникновении перегрузки. Порог срабатывания ключа устанавливают переменным резистором R5. Лампу Л1 выбирают исходя из требуемого номинального напряжения на нагрузке. Транзисторы Т2 и Т3 следует устанавливать на теплоотвод площадью не менее 100-120 см2.


Максимальное входное напряжение, при котором возможно использование описываемого устройства, - 50 В; максимальный ток нагрузки - 5 А; минимальный ток срабатывания - 0.4 А. Паление напряжения на защитном устройстве при открытом электронном ключе не превышает 1,5 В. Устройство может применяться для защиты выпрямителей, стабилизаторов напряжения, транзисторов мощных каскадов усилителей НЧ.


В. Макаров, Л. Выскубов, г. Ленинград