Все о тюнинге авто

36 определений предела функции. Пределы в математике для чайников: объяснение, теория, примеры решений. Бесконечно большие функции

В этой статье мы расскажем, что из себя представляет предел функции. Сначала поясним общие моменты, которые очень важны для понимания сути этого явления.

Понятие предела

В математике принципиально важным является понятие бесконечности, обозначаемое символом ∞ . Его следует понимать как бесконечно большое + ∞ или бесконечно малое - ∞ число. Когда мы говорим о бесконечности, часто мы имеем в виду сразу оба этих ее смысла, однако запись вида + ∞ или - ∞ не стоит заменять просто на ∞ .

Запись предела функции имеет вид lim x → x 0 f (x) . В нижней части мы пишем основной аргумент x , а с помощью стрелочки указываем, к какому именно значению x 0 он будет стремиться. Если значение x 0 является конкретным действительным числом, то мы имеем дело с пределом функции в точке. Если же значение x 0 стремится к бесконечности (не важно, ∞ , + ∞ или - ∞), то следует говорить о пределе функции на бесконечности.

Предел бывает конечным и бесконечным. Если он равен конкретному действительному числу, т.е. lim x → x 0 f (x) = A , то его называют конечным пределом, если же lim x → x 0 f (x) = ∞ , lim x → x 0 f (x) = + ∞ или lim x → x 0 f (x) = - ∞ , то бесконечным.

Если мы не можем определить ни конечное, ни бесконечное значение, это значит, что такого предела не существует. Примером этого случая может быть предел от синуса на бесконечности.

В этом пункте мы объясним, как найти значение предела функции в точке и на бесконечности. Для этого нам нужно ввести основные определения и вспомнить, что такое числовые последовательности, а также их сходимость и расходимость.

Определение 1

Число A является пределом функции f (x) при x → ∞ , если последовательность ее значений будет сходиться к A для любой бесконечно большой последовательности аргументов (отрицательной или положительной).

Запись предела функции выглядит так: lim x → ∞ f (x) = A .

Определение 2

При x → ∞ предел функции f (x) является бесконечным, если последовательность значений для любой бесконечно большой последовательности аргументов будет также бесконечно большой (положительной или отрицательной).

Запись выглядит как lim x → ∞ f (x) = ∞ .

Пример 1

Докажите равенство lim x → ∞ 1 x 2 = 0 с помощью основного определения предела для x → ∞ .

Решение

Начнем с записи последовательности значений функции 1 x 2 для бесконечно большой положительной последовательности значений аргумента x = 1 , 2 , 3 , . . . , n , . . . .

1 1 > 1 4 > 1 9 > 1 16 > . . . > 1 n 2 > . . .

Мы видим, что значения будут постепенно уменьшаться, стремясь к 0 . См. на картинке:

x = - 1 , - 2 , - 3 , . . . , - n , . . .

1 1 > 1 4 > 1 9 > 1 16 > . . . > 1 - n 2 > . . .

Здесь тоже видно монотонное убывание к нулю, что подтверждает верность данного в условии равенства:

Ответ: Верность данного в условии равенства подтверждена.

Пример 2

Вычислите предел lim x → ∞ e 1 10 x .

Решение

Начнем, как и раньше, с записи последовательностей значений f (x) = e 1 10 x для бесконечно большой положительной последовательности аргументов. Например, x = 1 , 4 , 9 , 16 , 25 , . . . , 10 2 , . . . → + ∞ .

e 1 10 ; e 4 10 ; e 9 10 ; e 16 10 ; e 25 10 ; . . . ; e 100 10 ; . . . = = 1 , 10 ; 1 , 49 ; 2 , 45 ; 4 , 95 ; 12 , 18 ; . . . ; 22026 , 46 ; . . .

Мы видим, что данная последовательность бесконечно положительна, значит, f (x) = lim x → + ∞ e 1 10 x = + ∞

Переходим к записи значений бесконечно большой отрицательной последовательности, например, x = - 1 , - 4 , - 9 , - 16 , - 25 , . . . , - 10 2 , . . . → - ∞ .

e - 1 10 ; e - 4 10 ; e - 9 10 ; e - 16 10 ; e - 25 10 ; . . . ; e - 100 10 ; . . . = = 0 , 90 ; 0 , 67 ; 0 , 40 ; 0 , 20 ; 0 , 08 ; . . . ; 0 , 000045 ; . . . x = 1 , 4 , 9 , 16 , 25 , . . . , 10 2 , . . . → ∞

Поскольку она тоже стремится к нулю, то f (x) = lim x → ∞ 1 e 10 x = 0 .

Наглядно решение задачи показано на иллюстрации. Синими точками отмечена последовательность положительных значений, зелеными ­ – отрицательных.

Ответ: lim x → ∞ e 1 10 x = + ∞ , п р и x → + ∞ 0 , п р и x → - ∞ .

Перейдем к методу вычисления предела функции в точке. Для этого нам нужно знать, как правильно определить односторонний предел. Это пригодится нам и для того, чтобы найти вертикальные асимптоты графика функции.

Определение 3

Число B является пределом функции f (x) слева при x → a в том случае, когда последовательность ее значений сходится к данному числу при любой последовательности аргументов функции x n , сходящейся к a , если при этом ее значения остаются меньше a (x n < a).

Такой предел на письме обозначается как lim x → a - 0 f (x) = B .

Теперь сформулируем, что такое предел функции справа.

Определение 4

Число B является пределом функции f (x) справа при x → a в том случае, когда последовательность ее значений сходится к данному числу при любой последовательности аргументов функции x n , сходящейся к a , если при этом ее значения остаются больше a (x n > a).

Этот предел мы записываем как lim x → a + 0 f (x) = B .

Мы можем найти предел функции f (x) в некоторой точке тогда, когда для нее существуют равные пределы с левой и правой стороны, т.е. lim x → a f (x) = lim x → a - 0 f (x) = lim x → a + 0 f (x) = B . В случае бесконечности обоих пределов предел функции в исходной точке также будет бесконечен.

Теперь мы разъясним данные определения, записав решение конкретной задачи.

Пример 3

Докажите, что существует конечный предел функции f (x) = 1 6 (x - 8) 2 - 8 в точке x 0 = 2 и вычислите его значение.

Решение

Для того чтобы решить задачу, нам потребуется вспомнить определение предела функции в точке. Для начала докажем, что у исходной функции имеется предел слева. Запишем последовательность значений фукнции, которая будет сходиться к x 0 = 2 , если x n < 2:

f (- 2) ; f (0) ; f (1) ; f 1 1 2 ; f 1 3 4 ; f 1 7 8 ; f 1 15 16 ; . . . ; f 1 1023 1024 ; . . . = = 8 , 667 ; 2 , 667 ; 0 , 167 ; - 0 , 958 ; - 1 , 489 ; - 1 , 747 ; - 1 , 874 ; . . . ; - 1 , 998 ; . . . → - 2

Поскольку приведенная последовательность сводится к - 2 , мы можем записать, что lim x → 2 - 0 1 6 x - 8 2 - 8 = - 2 .

6 , 4 , 3 , 2 1 2 , 2 1 4 , 2 1 8 , 2 1 16 , . . . , 2 1 1024 , . . . → 2

Значения функции в этой последовательности будут выглядеть так:

f (6) ; f (4) ; f (3) ; f 2 1 2 ; f 2 3 4 ; f 2 7 8 ; f 2 15 16 ; . . . ; f 2 1023 1024 ; . . . = = - 7 , 333 ; - 5 , 333 ; - 3 , 833 ; - 2 , 958 ; - 2 , 489 ; - 2 , 247 ; - 2 , 124 ; . . . , - 2 , 001 , . . . → - 2

Данная последовательность также сходится к - 2 , значит, lim x → 2 + 0 1 6 (x - 8) 2 - 8 = - 2 .

Мы получили, что пределы с правой и левой стороны у данной функции будут равными, значит, предел функции f (x) = 1 6 (x - 8) 2 - 8 в точке x 0 = 2 существует, и lim x → 2 1 6 (x - 8) 2 - 8 = - 2 .

Вы можете увидеть ход решения на иллюстрации (зеленые точки– последовательность значений, сходящаяся к x n < 2 , синие – к x n > 2).

Ответ: Пределы с правой и левой стороны у данной функции будут равными, значит, предел функции существует, и lim x → 2 1 6 (x - 8) 2 - 8 = - 2 .

Чтобы более глубоко изучить теорию пределов, советуем вам прочесть статью о непрерывности функции в точке и основных видах точек разрыва.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Рассмотрим функцию %%f(x)%%, определенную, по крайней мере, в некоторой проколотой окрестности %%\stackrel{\circ}{\text{U}}(a)%% точки %%a \in \overline{\mathbb{R}}%% расширенной числовой прямой.

Понятие предела по Коши

Число %%A \in \mathbb{R}%% называют пределом функции %%f(x)%% в точке %%a \in \mathbb{R}%% (или при %%x%%, стремящемся к %%a \in \mathbb{R}%%), если, каково бы ни было положительное число %%\varepsilon%%, найдется положительное число %%\delta%%, такое, что для всех точек проколотой %%\delta%%-окрестности точки %%a%% значения функции принадлежат %%\varepsilon%%-окрестности точки %%A%%, или

$$ A = \lim\limits_{x \to a}{f(x)} \Leftrightarrow \forall\varepsilon > 0 ~\exists \delta > 0 \big(x \in \stackrel{\circ}{\text{U}}_\delta(a) \Rightarrow f(x) \in \text{U}_\varepsilon (A) \big) $$

Это определение называется определением на языке %%\varepsilon%% и %%\delta%%, предложено французским математиком Огюстеном Коши и используется с начала XIX века по настоящее время, поскольку обладает необходимой математической строгостью и точностью.

Комбинируя различные окрестности точки %%a%% вида %%\stackrel{\circ}{\text{U}}_\delta(a), \text{U}_\delta (\infty), \text{U}_\delta (-\infty), \text{U}_\delta (+\infty), \text{U}_\delta^+ (a), \text{U}_\delta^- (a)%% с окрестностями %%\text{U}_\varepsilon (A), \text{U}_\varepsilon (\infty), \text{U}_\varepsilon (+\infty), \text{U}_\varepsilon (-\infty)%%, получим 24 определения предела по Коши.

Геометрический смысл

Геометрический смысл предела функции

Выясним, в чем заключается геометрический смысл предела функции в точке. Построим график функции %%y = f(x)%% и отметим на нем точки %%x = a%% и %%y = A%%.

Предел функции %%y = f(x)%% в точке %%x \to a%% существует и равен A, если для любой %%\varepsilon%%-окрестности точки %%A%% можно указать такую %%\delta%%-окрестность точки %%a%%, что для любого %%x%% из этой %%\delta%%-окрестности значение %%f(x)%% будет находиться в %%\varepsilon%%-окрестности точки %%A%%.

Отметим, что по определению предела функции по Коши для существования предела при %%x \to a%% не важно, какое значение принимает функция в самой точке %%a%%. Можно привести примеры, когда функция не определена при %%x = a%% или принимает значение, отличное от %%A%%. Тем не менее предел может быть равен %%A%%.

Определение предела по Гейне

Элемент %%A \in \overline{\mathbb{R}}%% называется пределом функции %%f(x)%% при %% x \to a, a \in \overline{\mathbb{R}}%%, если для любой последовательности %%\{x_n\} \to a%% из области определения, последовательность соответствующих значений %%\big\{f(x_n)\big\}%% стремится к %%A%%.

Определение предела по Гейне удобно использовать, когда возникают сомнения в существовании предела функции в данной точке. Если можно построить хотя бы одну последовательность %%\{x_n\}%% с пределом в точке %%a%% такую, что последовательность %%\big\{f(x_n)\big\}%% не имеет предела, то можно сделать вывод о том, что функция %%f(x)%% не имеет предела в этой точке. Если для двух различных последовательностей %%\{x"_n\}%% и %%\{x""_n\}%%, имеющих одинаковый предел %%a%%, последовательности %%\big\{f(x"_n)\big\}%% и %%\big\{f(x""_n)\big\}%% имеют различные пределы, то в этом случае также не существует предел функции %%f(x)%%.

Пример

Пусть %%f(x) = \sin(1/x)%%. Проверим, существует ли предел данной функции в точке %%a = 0%%.

Выберем сначала сходящуюся к этой точке последовательность $$ \{x_n\} = \left\{\frac{(-1)^n}{n\pi}\right\}. $$

Ясно, что %%x_n \ne 0~\forall~n \in \mathbb{N}%% и %%\lim {x_n} = 0%%. Тогда %%f(x_n) = \sin{\left((-1)^n n\pi\right)} \equiv 0%% и %%\lim\big\{f(x_n)\big\} = 0%%.

Затем возьмем сходящуюся к той же точке последовательность $$ x"_n = \left\{ \frac{2}{(4n + 1)\pi} \right\}, $$

для которой %%\lim{x"_n} = +0%%, %%f(x"_n) = \sin{\big((4n + 1)\pi/2\big)} \equiv 1%% и %%\lim\big\{f(x"_n)\big\} = 1%%. Аналогично для последовательности $$ x""_n = \left\{-\frac{2}{(4n + 1)\pi} \right\}, $$

также сходящейся к точке %%x = 0%%, %%\lim\big\{f(x""_n)\big\} = -1%%.

Все три последовательности дали разные результаты, что противоречит условию определения по Гейне, т.е. данная функция не имеет предела в точке %%x = 0%%.

Теорема

Определение предела по Коши и по Гейне эквивалентны.

Доказывая свойства предела функции, мы убедились, что от проколотых окрестностей, в которых были определены наши функции и которые возникали в процессе доказательств, кроме свойств указанных во введении к предыдущему пункту 2, действительно ничего не потребовалось. Это обстоятельство служит оправданием для выделения следующего математического объекта.

а. База; определение и основные примеры

Определение 11. Совокупность В подмножеств множества X будем называть базой в множестве X, если выполнены два условия:

Иными словами, элементы совокупности В суть непустые множества и в пересечении любых двух из них содержится некоторый элемент из той же совокупности.

Укажем некоторые наиболее употребительные в анализе базы.

Если то вместо пишут и говорят, что х стремится к а справа или со стороны больших значений (соответственно, слева или со стороны меньших значений). При принята краткая запись вместо

Запись будет употребляться вместо Она означает, что а; стремится по множеству Е к а, оставаясь больше (меньше), чем а.

то вместо пишут и говорят, что х стремится к плюс бесконечности (соответственно, к минус бесконечности).

Запись будет употребляться вместо

При вместо мы (если это не ведет к недоразумению) будем, как это принято в теории предела последовательности, писать

Заметим, что все перечисленные базы обладают той особенностью, что пересечение любых двух элементов базы само является элементом этой базы, а не только содержит некоторый элемент базы. С другими базами мы встретимся при изучении функций, заданных не на числовой оси.

Отметим также, что используемый здесь термин «база» есть краткое обозначение того, что в математике называется «базисом фильтра», а введенный ниже предел по базе есть наиболее существенная для анализа часть созданного современным французским математиком А. Картаном понятия предела по фильтру

b. Предел функции по базе

Определение 12. Пусть - функция на множестве X; В - база в X. Число называется пределом функции по базе В, если для любой окрестности точки А найдется элемент базы, образ которого содержится в окрестности

Если А - предел функции по базе В, то пишут

Повторим определение предела по базе в логической символике:

Поскольку мы сейчас рассматриваем функции с числовыми значениями, полезно иметь в виду и следующую форму этого основного определения:

В этой формулировке вместо произвольной окрестности V (А) берется симметричная (относительно точки А) окрестность (е-окрестность). Эквивалентность этих определений для вещественнозначных функций вытекает из того, что, как уже говорилось, в любой окрестности точки содержится некоторая симметричная окрестность этой же точки (проведите доказательство полностью!).

Мы дали общее определение предела функции по базе. Выше были рассмотрены примеры наиболее употребительных в анализе баз. В конкретной задаче, где появляется та или иная из этих баз, необходимо уметь расшифровать общее определение и записать его для конкретной базы.

Рассматривая примеры баз, мы, в частности, ввели понятие окрестности бесконечности. Если использовать это понятие, то в соответствии с общим определением предела разумно принять следующие соглашения:

или, что то же самое,

Обычно под подразумевают малую величину. В приведенных определениях это, разумеется, не так. В соответствии с принятыми соглашениями, например, можем записать

Для того чтобы можно было считать доказанными и в общем случае предела по произвольной базе все те теоремы о пределах, которые мы доказали в пункте 2 для специальной базы , необходимо дать соответствующие определения: финально постоянной, финально ограниченной и бесконечно малой при данной базе функций.

Определение 13. Функция называется финально постоянной при базе В, если существуют число и такой элемент базы, в любой точке которого

Определение 14. Функция называется ограниченной при базе В или финально ограниченной при базе В, если существуют число с и такой элемент базы, в любой точке которого

Определение 15. Функция называется бесконечно малой при базе В, если

После этих определений и основного наблюдения о том, что для доказательства теорем о пределах нужны только свойства базы, можно считать, что все свойства предела, установленные в пункте 2, справедливы для пределов по любой базе.

В частности, мы можем теперь говорить о пределе функции при или при или при

Кроме того, мы обеспечили себе возможность применения теории пределов и в том случае, когда функции будут определены не на числовых множествах; в дальнейшем это окажется особенно ценным. К примеру, длина кривой есть числовая функция, определенная на некотором классе кривых. Если мы знаем эту функцию на ломаных, то потом предельным переходом определяем ее для более сложных кривых, например для окружности.

В данный же момент основная польза от сделанного наблюдения и введенного в связи с ним понятия базы состоит в том, что они избавляют нас от проверок и формальных доказательств теорем о пределах для каждого конкретного вида предельных переходов или, в нашей нынешней терминологии, для каждого конкретного вида баз.

Для того чтобы окончательно освоиться с понятием предела по произвольной базе, доказательства дальнейших свойств предела функции мы проведем в общем виде.


Пусть функция у=ƒ (х) определена в некоторой окрестности точки х о, кроме, быть может, самой точки х о.

Сформулируем два, эквивалентных между собой, определения предела функции в точке.

Определение 1 (на «языке последовательностей», или по Гейне).

Число А называется пределом функции у=ƒ(х) в топке x 0 (или при х® х о), если для любой последовательности допустимых значений аргумента x n , n є N (x n ¹ x 0), сходящейся к х о последовательность соответствующих значений функции ƒ(х n), n є N, сходится к числу А

В этом случае пишут
или ƒ(х)->А при х→х о. Геометрический смысл предела функции: означает, что для всех точек х, достаточно близких к точке х о, соответствующие значения функции как угодно мало отличаются от числа А.

Определение 2 (на «языке ε», или по Коши).

Число А называется пределом функции в точке х о (или при х→х о), если для любого положительного ε найдется такое положительное число δ, что для все х¹ х о, удовлетворяющих неравенству |х-х о |<δ, выполняется неравенство |ƒ(х)-А|<ε.

Геометрический смысл предела функции:

если для любой ε-окрестности точки А найдется такая δ-окрестность точки х о, что для всех х¹ хо из етой δ-окрестность соответствующие значения функции ƒ(х) лежат в ε-окрестности точки А. Иными словами, точки графика функции у=ƒ(х) лежат внутри полосы шириной 2ε, ограниченной прямыми у=А+ ε , у=А-ε (см. рис. 110). Очевидно, что величина δ зависит от выбора ε, поэтому пишут δ=δ(ε).

<< Пример 16.1

Доказать, что

Решение: Возьмем произвольное ε>0, найдем δ=δ(ε)>0 такое, что для всех х, удовлетворяющих неравенству |х-3| < δ, выполняется неравенство |(2х-1)-5|<ε, т. е. |х-3|<ε.

Взяв δ=ε/2, видим, что для всех х, удовлетворяющих неравенству |х-3|< δ, выполняется неравенство |(2х-1)-5|<ε. Следовательно, lim(2x-1)=5 при х –>3.

<< Пример 16.2

16.2. Односторонние пределы

В определении предела функции считается, что х стремится к x 0 любым способом: оставаясь меньшим, чем x 0 (слева от х 0), большим, чем х о (справа от х о), или колеблясь около точки x 0 .

Бывают случаи, когда способ приближения аргумента х к х о существенно влияет на значение придела функции. Поэтому вводят понятия односторонних пределов.

Число А 1 называется пределом функции у=ƒ(х) слева в точке х о, если для любого число ε>0 существует число δ=δ(ε)> 0 такое, что при х є (х 0 -δ;x o), выполняется неравенство |ƒ(х)-А|<ε. Предел слева записывают так: limƒ(х)=А при х–>х 0 -0 или коротко: ƒ(х о- 0)=А 1 (обозначение Дирихле) (см. рис. 111).

Аналогично определяется предел функции справа, запишем его с помощью символов:

Коротко предел справа обозначают ƒ(х о +0)=А.

Пределы функции слева и справа называются односторонними пределами. Очевидно, если существует , то существуют и оба односторонних предела, причем А=А 1 =А 2 .

Справедливо и обратное утверждение: если существуют оба предела ƒ(х 0 -0) и ƒ(х 0 +0) и они равны, то существует предел и А=ƒ(х 0 -0).

Если же А 1 ¹ А 2 , то етот придел не существует.

16.3. Предел функции при х ® ∞

Пусть функция у=ƒ(х) определена в промежутке (-∞;∞). Число А называется пределом функции ƒ(х) при х→, если для любого положительного числа ε существует такое число М=М()>0, что при всех х, удовлетворяющих неравенству |х|>М выполняется неравенство |ƒ(х)-А|<ε. Коротко это определение можно записать так:

Геометрический смысл этого определения таков: для " ε>0 $ М>0, что при х є(-∞; -М) или х є(М; +∞) соответствующие значения функции ƒ(х) попадают в ε-окрестность точки А, т. е. точки графика лежат в полосе шириной 2ε, ограниченной прямыми у=А+ε и у=А-ε (см. рис. 112).

16.4. Бесконечно большая функция (б.б.ф.)

Функция у=ƒ(х) называется бесконечно большой при х→х 0 , если для любого числа М>0 существует число δ=δ(М)>0, что для всех х, удовлетворяющих неравенству 0<|х-хо|<δ, выполняется неравенство |ƒ(х)|>М.

Например, функция у=1/(х-2) есть б.б.ф. при х->2.

Если ƒ(х) стремится к бесконечности при х→х о и принимает лишь положительные значения, то пишут

если лишь отрицательные значения, то

Функция у=ƒ(х), заданная на всей числовой прямой, называется бесконечно большой при х→∞, если для любого числа М>0 найдется такое число N=N(M)>0, что при всех х, удовлетворяющих неравенству |х|>N, выполняется неравенство |ƒ(х)|>М. Коротко:

Например, у=2х есть б.б.ф. при х→∞.

Отметим, что если аргумент х, стремясь к бесконечности, принимает лишь натуральные значения, т. е. хєN, то соответствующая б.б.ф. становится бесконечно большой последовательностью. Например, последовательность v n =n 2 +1, n є N, является бесконечно большой последовательностью. Очевидно, всякая б.б.ф. в окрестности точки х о является неограниченной в этой окрестности. Обратное утверждение неверно: неограниченная функция может и не быть б.б.ф. (Например, у=хsinх.)

Однако, если limƒ(х)=А при х→x 0 , где А - конечное число, то функция ƒ(х) ограничена в окрестности точки х о.

Действительно, из определения предела функции следует, что при х→ х 0 выполняется условие |ƒ(х)-А|<ε. Следовательно, А-ε<ƒ(х)<А+ε при х є (х о -ε; х о +ε), а это и означает, что функция ƒ (х) ограничена.