Все о тюнинге авто

Лабораторная расчет температурных зависимостей электрофизических параметров полупроводников. Расчет энергетических параметров полупроводника. Режимы, характеристики и параметры электронных приборов

Изобретение относится к технике контроля полупроводников. Наиболее целесообразно использовать предлагаемое изобретение для бесконтактного, оперативного контроля параметров глубоких уровней (ГУ), поверхностных состояний (ПС), поверхностного потенциала (заряда), а также времени жизни неосновных носителей заряда. Сущность: возбуждают поверхностную фотоЭДС прямоугольными импульсами электромагнитного излучения, интенсивность которых изменяется от нуля до значений, обеспечивающих режим насыщения. Излучение попадает на поверхность полупроводника через прозрачный емкостной электрод. Амплитуда и форма импульса поверхностной фотоЭДС регистрируется с помощью этого электрода и измерительной цепи. Измерения проводят при нескольких различных интенсивностях импульсов электромагнитного излучения. По зарегистрированным характеристикам рассчитывают параметры релаксационных процессов, что позволяет определить электрофизические параметры полупроводника - концентрацию, энергию и сечение захвата ГУ и ПС, а также поверхностный заряд, поверхностный потенциал, время жизни неосновных носителей заряда. 2 з.п. ф-лы, 1 табл., 7 ил.

Рисунки к патенту РФ 2330300

Изобретение относится к технике контроля полупроводников. Наиболее целесообразно использовать предлагаемое изобретение для контроля параметров глубоких уровней (ГУ), поверхностных состояний (ПС), поверхностного потенциала (заряда), а также времени жизни неосновных носителей заряда.

Известен ряд способов определения параметров полупроводников. Вольт-фарадный способ основан на создании на контролируемой поверхности полупроводника структуры металл - диэлектрик - полупроводник (МДП), определении зависимости емкости такой структуры от напряжения, приложенного между полупроводником и металлом, и анализе этой зависимости . Способ позволяет определить ряд параметров полупроводника - поверхностный потенциал (заряд), плотность ПС, объемное генерационное время носителей заряда, концентрацию легирующей примеси. Недостатком способа является необходимость создания такой структуры, а также сравнительная сложность проведения измерений.

Известен также способ определения времени жизни неосновных носителей заряда, сущность которого состоит в определении стационарного значения поверхностной фотоЭДС (ПФЭ) при нескольких различных значениях длины волны электромагнитного излучения, облучающего поверхность контролируемой полупроводниковой пластины. При этом используется периодическая модуляция интенсивности электромагнитного излучения, а стационарное значение поверхностной фотоЭДС определяется по амплитуде основной гармоники сигнала этой ЭДС, снимаемого с помощью емкостного зонда . Недостатком способа является его сложность (необходимо проводить измерения на нескольких (до 10) длинах волны). Следует отметить, что при заданных форме импульсов электромагнитного излучения и частоте их следования форма сигнала поверхностной фотоЭДС зависит также и от интенсивности импульса электромагнитного излучения. Это вносит дополнительную погрешность и ограничивает область применения метода.

Наиболее близок к предлагаемому изобретению способ определения электрофизических параметров полупроводников согласно патенту РФ №2080611 .

При использовании этого способа контролируемую полупроводниковую пластину облучают импульсами электромагнитного излучения. Облучение осуществляют через прозрачный емкостной электрод, представляющий собой прозрачную проводящую прокладку, расположенную параллельно поверхности полупроводниковой пластины. Результатом облучения является генерация неравновесной разности потенциалов на барьерном переходе поверхность - объем полупроводника. Регистрация этой разности потенциалов осуществляется путем определения амплитуды и формы импульсов напряжения между емкостным электродом и объемом полупроводника. Измерения проводятся в диапазоне температур. По амплитуде и форме импульсов напряжения определяются параметры релаксационных процессов установления и рассасывания неравновесной разности потенциалов, а по зависимости параметров этих процессов от температуры вычисляют электрофизические параметры полупроводника. Достоинством этого способа является обеспечение неразрушающего контроля параметров ГУ полупроводника с достаточно высокой чувствительностью (до 10 8 ÷10 9 см -3) и высоким разрешением (лучше 10 -2 эВ) без каких-либо дополнительных технологических операций. Недостатком способа является то, что для определения параметров полупроводника необходимо охлаждение и нагревание полупроводника. Это делает невозможным оперативный контроль в режиме in line. Кроме того, возможно определение лишь параметров ГУ.

Целью изобретения является обеспечение оперативного контроля параметров полупроводника без нагрева или охлаждения контролируемых образцов, а также получение возможности контроля параметров ПС, поверхностного потенциала, поверхностного заряда и объемного времени жизни неосновных носителей заряда. Указанная цель достигается тем, что в известном способе определения электрофизических параметров полупроводников, включающем создание неравновесной разности потенциалов на барьерном переходе поверхность - объем полупроводника путем облучения полупроводниковой пластины, расположенной на проводящем столике-подставке, прямоугольными импульсами электромагнитного излучения, энергия кванта которого выше энергетического порога генерации свободных носителей заряда в полупроводниковой пластине, через емкостной электрод, представляющий из себя прозрачную проводящую обкладку, расположенную параллельно поверхности полупроводниковой пластины, регистрацию упомянутой неравновесной разности потенциалов путем определения амплитуды и формы импульсов напряжения между емкостным электродом и столиком-подставкой, расчете параметров релаксационных процессов установления и рассасывания неравновесной разности потенциалов на упомянутом барьерном переходе по амплитуде и форме напряжения на упомянутом емкостном электроде и вычислении по параметрам релаксационных процессов электрофизических параметров полупроводника, длительность импульсов электромагнитного излучения устанавливают больше времени установления неравновесной разности потенциалов на барьерном переходе поверхность - объем полупроводника. Промежуток времени между импульсами излучения устанавливают больше времени рассасывания этой неравновесной разности потенциалов. Регистрацию напряжения на упомянутом емкостном электроде осуществляют путем определения амплитуды и формы импульсов напряжения посредством измерительной цепи, постоянная времени которой, равная произведению емкости между емкостным электродом и полупроводниковой пластиной на входное сопротивление этой измерительной цепи, больше времени как установления, так и рассасывания упомянутой неравновесной разности потенциалов. Расчет параметров релаксационных процессов установления и рассасывания неравновесной разности потенциалов на барьерном переходе поверхность - объем полупроводника производят при нескольких различных интенсивностях импульсов электромагнитного излучения, изменяющихся от минимальных значений, при которых еще возможна регистрация неравновесной разности потенциалов на барьерном переходе, до значений, при которых амплитуда сигнала с емкостного электрода не зависит от интенсивности импульса излучения. Параметры поверхностных состояний, параметры глубоких уровней и величину поверхностного потенциала рассчитывают по зависимости параметров релаксационных процессов от интенсивности импульсов излучения. Зависимости параметров релаксационных процессов установления и рассасывания неравновесной разности потенциалов на барьерном переходе поверхность - объем полупроводника от интенсивности импульса излучения целесообразно определять при создании между емкостным электродом и объемом полупроводника разности электрического потенциала положительной или отрицательной полярности. Это дает возможность определить параметры ПС и ГУ в более широком диапазоне их значений. Кроме того, определение параметров релаксационных процессов целесообразно определять при двух или больше длинах волны электромагнитного излучения. Это дает возможность определить объемное время жизни неосновных носителей заряда, которое рассчитывают по зависимостям параметров релаксационных процессов установления и рассасывания неравновесной разности потенциалов на барьерном переходе поверхность - объем полупроводника, как от интенсивности, так и от длины волны импульса электромагнитного излучения.

Предлагаемый способ определения электрофизических параметров полупроводников является дальнейшим развитием способа, описанного в . Основной отличительной особенностью предлагаемого способа является то, что определение неравновесной разности потенциалов на барьерном переходе проводится в диапазоне изменений интенсивности излучения от нуля до такого значения, при котором наступает насыщение зависимости амплитуды сигнала от интенсивности излучения. Математическая обработка результатов этих измерений позволяет определить параметры ГУ, ПС, а также поверхностный заряд при комнатной температуре. Возможно проведение измерений и при других температурах.

Согласно второму варианту изобретения при измерениях параметров релаксационных процессов на емкостной электрод подается постоянное электрическое напряжение. Это дает возможность определять параметры ПС и ГУ, энергия активизации которых лежит во всем диапазоне запрещенной энергетической зоны.

Согласно третьему варианту изобретения измерения проводятся при двух или более длинах волны электромагнитного излучения, что дает возможность определить объемное время жизни неосновных носителей заряда. Отметим, что для определения точного значения этого параметра необходимо учитывать зависимость амплитуды и формы сигнала поверхностной фотоЭДС как от длины волны, так и от интенсивности электромагнитного излучения.

Объединение трех технических решений в одну заявку связано с тем, что все они решают задачу определения электрофизических параметров полупроводника на основе одного принципа - учета не только амплитуды, но и формы сигнала поверхностной фотоЭДС, а также зависимости сигнала ПФЭ от интенсивности импульсов электромагнитного излучения.

В дальнейшем поверхностную фотоЭДС, генерируемую прямоугольными импульсами излучения, будем называть импульсной поверхностной фотоЭДС (ИПФЭ).

На фиг.1 приведена функциональная блок-схема устройства, реализующего предлагаемый способ, на фиг.2 - эквивалентная схема измерений, на фиг.3 - энергетические диаграммы барьерного перехода поверхность - объем полупроводника. На фиг.4-8 приведены результаты измерений поверхностной фотоЭДС (ПФЭ) на пластине кремния КЭФ 4,5. На фиг.4 - графики сигнала ПФЭ при изменении амплитуды сигнала от 0 до 0,24 В, на фиг.5 нормированные графики тех же процессов. На фиг.6 и 7 приведены графики приращений заднего фронта сигнала ИПФЭ.

Устройство, реализующее предлагаемый способ, состоит из столика-подставки 1, на котором помещается контролируемая пластина 2. Этот столик выполнен из проводящего материала. Пластина 2 облучается электромагнитным излучением через прозрачный проводящий электрод 3. Источником излучения является лазерный светодиод 5, возбуждаемый генератором прямоугольных импульсов тока регулируемой амплитуды 4. Электромагнитное излучение от светодиода 5 попадает в световод 6 и далее через электрод 3 на контролируемую полупроводниковую пластину 2. Электрод 3 подсоединен к источнику постоянного напряжения 10. Сигнал поверхностной фотоЭДС снимается электродом 3 и подается через разделительный конденсатор 9 на вход высокоомного измерительного усилителя 7 и далее на регистрирующее устройство 8. В качестве регистрирующего устройства целесообразно использовать цифровой осциллограф.

На фиг.3 приведены энергетические диаграммы барьерного перехода поверхность - объем полупроводника. На этой фиг. Е - энергия, q - заряд электрона, V k - барьерная разность потенциалов перехода поверхность - объем, V m - значение V в режиме насыщения, Е c , Е v - границы зоны проводимости и валентной зоны, F - уровень Ферми, F e - квазиуровень Ферми для электронов, F h - квазиуровень Ферми для дырок, Е 0 - энергетический уровень (ГУ), h 1 , h 2 , h 3 - координаты границы области пространственного заряда, w 1 , w 2 - значения продольной координаты при Е 0 =F и при Е 0 =F e . Диаграмма "а" соответствует равновесному состоянию, "б" - стационарному неравновесному состоянию, когда электромагнитное излучение генерирует фотоЭДС величиной Гц, "в" соответствует случаю, когда q·V=q·V k -Е 0 ; "г" соответствует насыщению, когда зоны спрямлены и фотоЭДС имеет максимальное значение, не зависящее от интенсивности излучения. Диапазоны значений энергий ПС, заполненных электронами, отмечены кружками.

На фиг.4 приведены записи сигнала ИПФЭ для шайбы кремния КЭФ 4,5 диаметром 100 мм и толщиной 1,5 мм при различной интенсивности прямоугольных импульсов излучения с длиной волны 0,86 мкм. Длительность импульса - 1,2 мсек.

На фиг.5 приведены те же сигналы, нормированные таким образом, что в момент окончания импульса излучения значение нормированного сигнала ИПФЭ равнялось 1.

На фиг.6 приведены графики приращений заднего фронта сигнала ИПФЭ; непрерывная линия - амплитуда менялась от 0 до ˜20 мВ; мелкий пунктир - от 20 до ˜30 мВ и крупный пунктир - от 30 до ˜40 мВ.

На фиг.7 приведены аналогичные графики для приращений от 70 до 80 мВ - непрерывная линия, от 80 до 90 мВ - мелкий пунктир и от 90 до 100 мВ - крупный пунктир.

Способ реализуется следующим образом.

Рассмотрим случай, когда однородная пластина полупроводника n типа облучается импульсами электромагнитного излучения длительностью Т 0 и интенсивностью I 0 , а напряжение источника питания 10 равно нулю. При включении излучения происходит генерация неравновесных носителей заряда, их диффузия и дрейф под действием электрического поля барьерного перехода поверхность - объем полупроводника. Это приводит к снижению разности потенциалов барьерного перехода и возникновению поверхностной фотоЭДС; при этом происходит захват электронов на те ГУ и ПС, которые оказались ниже квазиуровня Ферми для электронов. Процессами, связанными с генерацией ЭДС Дембера, пренебрежем. Значение выберем Т 0 достаточным для установления стационарного состояния. По окончании импульса излучения происходит рассасывание неравновесных носителей заряда и опустошение ГУ и ПС, находившихся выше уровня Ферми. Эквивалентная схема измерения поверхностной фотоЭДС V приведена на фиг.2. Величины емкости емкостного электрода С и входного сопротивления измерительного усилителя R in выберем такими, чтобы постоянная времени измерительной цепи, равная произведению R in ·(С+С 0), была больше как времени установления стационарного значения фотоЭДС от 0 до V 0 , так и времени рассасывания от V 0 до 0. Измерения поверхностной фотоЭДС производятся либо в режиме одиночных импульсов излучения, либо с достаточно низкой частотой повторения, обеспечивающей полное рассасывание фотоЭДС от V 0 до 0.

Для определения значения поверхностного заряда Q S увеличим интенсивность излучения I 0 до насыщения, т.е. такого значения, при котором V 0 не зависит от I 0 . Энергетическая диаграмма для такого режима приведена на фиг.3г. Предельное значение V m соответствует поверхностному потенциальному барьеру V k . Поверхностный заряд Q S определяется при этом соотношением

где ,

n i - равновесная концентрация носителей заряда в собственном полупроводнике,

Относительная диэлектрическая проницаемость полупроводника,

0 - диэлектрическая проницаемость вакуума,

k - постоянная Больцмана,

Т - абсолютная температура,

n 0 , р 0 - полные объемные концентрации электронов и дырок в условиях термодинамического равновесия.

Для определения параметров ГУ и ПС необходимо определить параметры релаксационных процессов установления и рассасывания ИПФЭ при различных интенсивностях электромагнитного излучения, изменяющихся от нуля до насыщения. На фиг.4 приведены записи таких процессов для шайбы кремния n типа. Интенсивность импульса излучения изменялась таким образом, чтобы значение поверхностной фотоЭДС в установившемся режиме в конце импульса излучения изменялась от ˜0,03 до ˜0,32 В. На фиг.5 приведены графики тех же релаксационных процессов, нормированные таким образом, чтобы в конце импульса излучения их значения совпадали. Как видно при различных интенсивностях излучения, существенно менялась не только амплитуда, но и форма импульсов поверхностной фотоЭДС.

Далее ограничимся рассмотрением релаксационных процессов рассасывания ПФЭ. Кроме того, будем рассматривать случай обедненного слоя пространственного заряда. Задний фронт ИПФЭ будем представлять как сумму экспонент. При этом наиболее быстрый процесс (порядка единиц - десятков микросекунд) соответствует рассасыванию неравновесных носителей заряда (ННЗ); обозначим через 0 постоянную времени этого процесса.

Рассмотрим сначала случай без ГУ. Интервал энергий на энергетической диаграмме при x=0 от дна зоны проводимости до уровня Ферми разобьем на N более мелких интервалов шириной E каждый. Средняя энергия ПС на каждом из этих интервалов равна

.

Здесь i - номер интервала (отсчет идет от уровня Ферми). Релаксационный процесс рассасывания ПФЭ при i=1, когда , описывается соотношением

В случае i-го интервала

Здесь А 0i - амплитуда релаксационного процесса рассасывания ННЗ; А sj , sj - амплитуда и постоянная времени релаксационного процесса опустошения на j-ом интервале энергии. Отметим, что V i (0)=V 0 . Очевидно, что

Соотношения (2)-(4) являются приближенными, полученными в предположении, что рассасывание неравновесных носителей заряда, а также опустошение ПС происходит по экспоненциальной зависимости.

Обозначим через N si среднюю плотность ПС на i-ом интервале (т.е. среднее число ПС, приходящихся на единицу освещенной площади полупроводника и на единицу диапазона энергии). Тогда

где С si - дифференциальная емкость пространственного заряда, соответствующая i-ому интервалу (отнесенная к единице площади). Величина С si определяется соотношением

В соотношении (6)

Средняя плотность ПС, соответствующая энергии Е i ,

Для определения N si необходимо произвести запись сигналов заднего фронта ПФЭ V i+1 и V i , соответствующих значениям энергии Е i+1 и Е i , рассчитать разность V i+1 -V i , разложить эту разность на экспоненты и определить А si . Значение С si может быть рассчитано по значению V k . Сечение захвата ПС, соответствующее энергии Е i - si , может быть рассчитано из соотношения :

где - средняя тепловая скорость электронов; N 0 - эффективная плотность состояний в зоне проводимости полупроводника.

Отметим, что постоянные времени релаксационных процессов, связанных с перезарядкой ПС - si , зависят от энергии ПС; при приближении энергии ПС к дну зоны проводимости они уменьшаются. Это приводит к увеличению суммарной длительности процесса рассасывания ПФЭ при уменьшении амплитуды ПФЭ (см. фиг.5, 6).

где А li и l - амплитуда релаксационного процесса опустошения ГУ и его постоянная времени.

Релаксационные процессы, связанные с ГУ, не меняют постоянной времени с изменением интенсивности импульса излучения. Это позволяет отличить их от релаксационных процессов, связанных с ПС. Вместе с тем, начиная с некоторого значения i, когда E i >(qV k -Е 0) и А li =А li+1 , в соотношении (4") исчезает слагаемое с экспонентой е -t/ l . Это может быть использовано для определения значения Е 0 .

Отметим, что при увеличении интенсивности излучения от нуля до насыщения постоянная времени релаксационного процесса рассасывания ННЗ остается неизменной.

Обозначим через Q li величину заряда рассасывания с ГУ, отнесенную к единице площади освещенной поверхности полупроводника. Амплитуда А li связана с Q l1 соотношением:

С другой стороны

где N l - объемная концентрация ГУ. В показано, что w 2 -w 1 =h 2 -h 1 . В случае обедненного слоя пространственного заряда электростатический потенциал изменяется по параболической зависимости (как и в случае барьера Шоттки). Для полупроводника n типа

Подставив (11) и (12) в (10) и (10) в (9) получим

Соотношение (13) позволяет определить концентрацию ГУ. Сечение захвата ГУ - l может быть рассчитано при известных Е 0 и l из соотношения :

где g - коэффициент вырождения ГУ.

Таким образом, определив параметры релаксационных процессов ИПФЭ при изменении интенсивности излучения от нуля до насыщения, можно определить следующие электрофизические параметры полупроводника: поверхностный потенциал V k , поверхностный заряд Q s , плотность N si и сечение захвата Si ПС, а также концентрацию N l , энергию E 0 и сечение захвата l ГУ.

В случае двух и более ГУ в соотношениях (2"), (3") и (4") появятся дополнительные экспоненты с постоянной времени, не зависящей от интенсивности излучения, однако алгоритм определения параметров ГУ и ПС существенно не изменится.

Выше был рассмотрен случай, когда на емкостной электрод от источника напряжения 10 подавалось нулевое напряжение, а поверхностный потенциал определялся лишь свойствами поверхности полупроводника. При подаче напряжения от источника 10 положительной или отрицательной полярности на поверхности полупроводника наводится дополнительный заряд, а энергетическая диаграмма смещается вниз или вверх. Это дает возможность определить параметры ПС и ГУ в большем диапазоне энергий во всей запрещенной зоне.

Рассмотрим далее алгоритм определения объемного времени жизни ННЗ mc . Как известно , mc связан с диффузной длиной волны L p . Для расчета этого параметра необходимо определить зависимости сигнала ИПФЭ от интенсивности импульса излучения, по крайней мере, при двух значениях длины волны. Затем следует подобрать два значения интенсивности излучения I 01 и I 02 , соответствующих двум длинам волны 1 и 2 , при которых стационарные значения ИПФЭ V 01 и V 02 равны между собой. Диффузная длина определяется выражением :

где 1 =с/ 1 ; 2 =c/ 2 ; 1 и 2 - коэффициенты поглощения электромагнитного излучения на длине волны 1 и 2 ; h - постоянная Планка, с - скорость света в вакууме.

Объемное время жизни ННЗ определяется соотношением:

где D - коэффициент диффузии.

Отметим, что анализ зависимости амплитуды и формы сигнала ИПФЭ от интенсивности излучения позволит оптимизировать значения I 01 и I 02 , обеспечивающие наименьшую погрешность определения mc .

В качестве примера приведем результаты исследования предлагаемым способом шайбы кремния КЭФ 4,5 диаметром 100 мм и толщиной 700 мкм. На фиг.4 приведены записи ИПФЭ на этой шайбе при длительности импульса излучения 1 мс, длине волны 0,87 мкм и мощность источника излучения ˜200 мВт. Диаметр облучаемой области составлял ˜3 мм. Постоянная времени измерительной цепи равнялась 0,3 с. На фиг.5 приведены нормированные графики ИПФЭ. Нормировка выполнена таким образом, что начала спада графиков импульса поверхностной фотоЭДС совпадают. Видно, что форма импульса существенно зависит от интенсивности излучения. При ее увеличении крутизна, как переднего, так и заднего фронтов увеличивается, что свидетельствует об увеличении вклада более быстрых релаксационных процессов. Поверхностный потенциал исследуемой шайбы равнялся 0,24 В, что соответствует поверхностному заряду Q S =2.9·10 -7 К/см 2 (1,8·10 12 заряженных частиц на кв.см).

На фиг.7 приведены графики приращений заднего фронта ИПФЭ при увеличении амплитуды сигнала от 0 до ˜20 мВ - непрерывная линия, от 20 до 30 мВ - мелкий пунктир, от 30 до 40 мВ крупный пунктир; на фиг.8 такие же графики при увеличении амплитуды сигнала от 70 до 80 мВ - непрерывная линия, от 80 до 90 мВ - мелкий пунктир, от 90 до 100 мВ - крупный пунктир. Обработка результатов измерений состояла в разложении графиков приращений заднего фронта сигнала ИПФЭ на экспоненты по стандартной программе нелинейной регрессии. Результаты расчетов приведены в таблице 1. В этой таблице Е - середина диапазона энергий, для которого производился расчет. Полученные в результате расчетов экспоненты разделены на четыре группы. В первую группу входят экспоненты с постоянной времени не больше 10 мкс. Это дает основания связать их с процессами рассасывания неравновесных носителей заряда. Во вторую группу входят экспоненты с постоянной времени порядка нескольких десятков мкс, в третью - несколько сотен мкс и в четвертую - порядка единиц мс. Эти три группы экспонент вероятнее всего связаны с опустошением ПС, лежащих в диапазоне энергий от 0 до 0,24 эВ. Отметим, что одной и той же энергии соответствует несколько экспонент с существенно различными постоянными времени. Это свидетельствует о том, что одной и той же энергии соответствуют ПС с различными сечениями захвата, т.е. различной физической природы.

Таблица 1
Е, мэВ А 1 , мВ 1 , мкс А 2 , мВ 2 , мкс 2 ×10 20 , см 2 N S2 ×10 12 , см -2 ·В -1 А 3 , мВ 3 , мкс 3 ×10 20 , см 2 N S3 ×10 -12 , см -2 ·B -1 А 4 , мВ 4 , мс 4 ×10 20 , см 2 N S3 ×10 -12 , см -2 ·В -1
10,5 - - 2,2 23 52 3 19 360 3,3 26,5 - - - -
30,4 - - 1,9 17 33 4,05 9,6 210 2,7 20,2 6,6 1,9 0,29 13,9
49,5 2 2,1 5,6 47 5,6 7,87 12 290 0,91 16,8 - - - -
70,4 4 9,8 5,3 34 3,5 4,32 13 340 0,35 10,8 - - - -
92,1 5,3 2,2 4,6 27 1,9 2,64 6,5 140 0,36 3,71 7,2 0,7 0,076 4,1
112 - - 3 39 0,61 1,32 9,5 270 0,09 4,15 - - - -
128 1,4 6,6 - - - - 4,2 110 0,11 1,89 4,9 0,5 0,024 2,12
145 6,6 2,2 4,9 38 0,17 1,02 - - - - 8,6 0,7 0,01 1,79
167 - - - - - - - - - - - - - -
187 12 2,1 - - - - 2,6 100 0,013 0,3 7,7 0,8 0,002 0,87
209 11 4,6 - - - - - - - - 12 0,8 0,007 0,76
228 22 6 - - - - - - - - - - - -

Литература

1. Павлов Л.П. Методы измерения параметров полупроводниковых материалов. М.: Высшая школа, 1987. 239 с.

2. ASTM Standard F 391-96. Standard Test Methods for Minority Carrier Diffusion Length in Extrinsic Semiconductors by Measurement of Steady-State Surface Photovoltage.

3. Русаков Н.В., Кравченко Л.Н., Подшивалов В.Н. Способ определения электрофизических параметров полупроводников. Патент РФ №2080611.

4. Ржанов А.В. Электронные процессы на поверхности полупроводников. М.: Наука, 1971, 480 с.

5. Берман Л.С., Лебедев А.А. Емкостная спектроскопия глубоких центров в полупроводниках. - Л.: Наука, Ленинградское отделение, 1981.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ определения электрофизических параметров полупроводников, включающий создание неравновесной разности потенциалов на барьерном переходе поверхность - объем полупроводника путем облучения полупроводниковой пластины, расположенной на токопроводящем столике-подставке, прямоугольными импульсами электромагнитного излучения, энергия кванта которого выше энергетического порога генерации свободных носителей заряда в полупроводниковой пластине, через емкостной электрод, представляющей из себя прозрачную проводящую обкладку, расположенную параллельно поверхности полупроводниковой пластины, регистрацию упомянутой неравновесной разности потенциалов путем определения амплитуды и формы импульсов напряжения между емкостным электродом и упомянутым столиком-подставкой, расчете параметров релаксационных процессов установления и рассасывания неравновесной разности потенциалов на упомянутом барьерном переходе по амплитуде и форме импульсов напряжения на упомянутом емкостном электроде и вычислении по параметрам релаксационных процессов электрофизических параметров полупроводника, отличающийся тем, что длительность импульсов электромагнитного излучения устанавливают больше времени установления неравновесной разности потенциалов на барьерном переходе поверхность - объем полупроводника, а промежуток времени между импульсами излучения устанавливают больше времени рассасывания этой неравновесной разности потенциалов, при этом регистрацию напряжения на упомянутом емкостном электроде осуществляют путем определения амплитуды и формы импульсов напряжения посредством измерительной цепи, постоянная времени которой, равная произведению емкости между емкостным электродом и полупроводниковой пластиной на входное сопротивление этой измерительной цепи, больше времени как установления, так и рассасывания упомянутой неравновесной разности потенциалов, регистрацию неравновесной разности потенциалов на барьерном переходе поверхность - объем полупроводника и расчет параметров релаксационных процессов установления и рассасывания неравновесной разности потенциалов на барьерном переходе поверхность - объем полупроводника производят при нескольких различных интенсивностях импульсов электромагнитного излучения, увеличивающихся от минимальных значений, при которых еще возможна регистрация неравновесной разности потенциалов на барьерном переходе, до, по крайней мере, таких значений, при которых можно уверенно зарегистрировать, что увеличение амплитуды напряжения между емкостным электродом и столиком-подставкой при увеличении интенсивности излучения на фиксированную величину меньше, чем амплитуда сигнала, соответствующая интенсивности излучения, численно равной этой фиксированной величине, а параметры поверхностных состояний, параметры глубоких уровней и величину поверхностного потенциала рассчитывают по зависимости параметров релаксационных процессов от интенсивности импульсов излучения.

2. Способ по п.1, отличающийся тем, что параметры релаксационных процессов установления и рассасывания неравновесной разности потенциалов между объемом и поверхностью полупроводника определяют при создании между емкостным электродом и столиком-подставкой разности электрических потенциалов, а параметры глубоких уровней и поверхностных состояний рассчитывают по зависимостям релаксационных процессов от интенсивности импульсов излучения, а также по полярности и величине упомянутой разности потенциалов между емкостным электродом и столиком-подставкой.

3. Способ по п.1, отличающийся тем, что зависимости параметров релаксационных процессов установления и рассасывания неравновесной разности потенциалов на барьерном переходе поверхность - объем полупроводника от интенсивности импульса излучения определяют при двух или больше длинах волны электромагнитного излучения, а объемное время жизни неосновных носителей заряда рассчитывают по зависимостям параметров релаксационных процессов установления и рассасывания неравновесной разности потенциалов на барьерном переходе поверхность - объем полупроводника, как от интенсивности импульса электромагнитного излучения, так и от длины волны этого излучения.

(Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!


Введение

Физические процессы в полупроводниках и их свойства

1 Собственные полупроводники

2 Электронный полупроводник

3 Дырочный полупроводник

4 Энергетические диаграммы полупроводников

5 Основные и неосновные носители заряда

6 Температурная зависимость концентрации носителей заряда

7 Донорные и акцепторные полупроводники

8 Зависимость концентрации электронов от энергии уровня Ферми

9 Положение уровня Ферми и концентрация свободных носителей заряда в собственных полупроводниках

Вычисление температурных зависимостей электрофизических параметров полупроводников

1 Приближённый расчёт зависимости концентрации дырок от температуры

1.1 Вычисление средней температуры

1.2 Вычисление эффективной массы электрона и дырки

1.3 Вычисление эффективной плотности состояний в валентной зоне и зоне проводимости

1.4 Расчёт температурыи

1.5 Область низких температур

1.6 Область средних температур

1.7 Область высоких температур

2 Аналитический расчёт зависимости концентрации свободных носителей заряда и положения уровня Ферми от температуры

2.1 Нахождение точных значенийи

2.2 Область низких температур (точные значения)

2.3 Область средних температур (точные значения)

2.4 Область высоких температур (точные значения)

Заключение

Список используемых источников

Приложение А Программа расчёта

Приложение В Графики зависимостей

Реферат Пояснительная записка содержит 54 страниц машинописного текста, включает 2 приложения, 14 рисунков, список использованных источников из 10 наименований.

Ключевые слова: собственный полупроводник, полупроводник акцепторного типа, эффективная масса, соотношение действующих масс, эффективная плотность состояний, уровень Ферми, ширина запрещённой зоны, носители заряда, концентрация носителей заряда, акцепторная примесь, энергия ионизации примеси, область истощения примеси, область собственной электропроводности, область собственной проводимости, область слабой ионизации, концентрация дырок, точные значения.

Цель работы: рассчитать температурную зависимость концентрации свободных носителей заряда в полупроводнике акцепторного типа, а так же построить график этой зависимости в координатах: ln n = F(1/T). Определить и построить графически зависимость энергии уровня Ферми от температуры, и произвести расчет температур перехода к собственной проводимости и истощения примеси.

Задачи: использовать данную курсовую работу как основу фундамента знаний о физике полупроводников, а так же развить свой технический кругозор для улучшения своей профессиональной пригодности.

2. Вычисление температурных зависимостей электрофизических параметров полупроводников

Для того, чтобы произвести расчёт нужных параметров, я ввёл необходимые величины, такие как:

Заряд электрона

Масса покоя атома

Энергия ионизации донорного уровня

Массы электронов по главным осям элипсоидов

Массы дырок по главным осям элипсоидов

Число долин в зоне проводимости

Число долин в валентной зоне

Концентрация донорных атомов

Постоянная Больцмана

Ширина запрещённой зоны

Температура

Постоянная Планка

После чего последовала необходимость перевести их в систему СИ. Теперь, когда все данные перед нами, можно начинать с приближённого расчёта зависимости концентрации электронов от температуры.

2.1 Приближённый расчёт зависимости концентрации электронов от температуры

Для начала я нашла среднюю температуру и эффективную массу электронов и дырок и, которые далее необходимы для вычисления эффективной плотности состояний в валентной зоне и зоне проводимости и

3) вычисление теплоемкости cn и количества теплоты процесса q; 4) вычисление работы изменения объема l и внешней работы процесса l`. 5) вычисление изменения термодинамических функций: a) внутренней энергии, b) энтальпии, c) энтропии...

Анализ политропного процесса смеси идеальных газов

Соотношение для давлений и объемов в начальном и конечном состояниях следует из (10); соотношения для температур и давлений или температур и объемов можно получить...

Анализ режимов и выбор основных параметров системы электропередачи

Для каждого стандартного сечения линии данного типа и напряжения построим зависимости приведенных затрат от мощности З=f(Р). Это выражение представляет собой согласно параболу вида З=А+ВI2нб, где Iнб=. По и вероятности заполнения этих уровней электронами. Интегрирование нужно проводить от нижнего (Е с) до самого верхнего уровня зоны проводимости, т.е.

(1.1.5)

где - эффективная плотность состояний в зоне проводимости, энергия которых приведена ко дну зоны проводимости.

Аналогичным образом для равновесной концентрации дырок в любом невырожденном полупроводнике получим:

(1.1.6)

где - эффективная плотность состояний в валентной зоне, энергия которых приведена к потолку валентной зоны (E v).

С учетом (1.1.1) для собственного полупроводника имеем:

Отсюда путем логарифмирования легко найти положение уровня Ферми:

(1.1.8)

Учитывая близость значений N V и N c , приходим к выводу о том, что в собственном полупроводнике уровень Ферми расположен приблизительно посередине запрещенной зоны (см. рисунок 1.1.1):

Где ширина запрещённой зоны.

Для графического изображения температурной зависимости выражение (1.1.9) удобно представить в виде:

(1.1.11)

Произведение N C N V является слабой функцией от температуры; поэтому зависимость логарифма концентрации носителей заряда от обратной температуры близка к линейной, причем наклон прямой характеризует ширину запрещенной зоны полупроводника. Для примера на рисунке 1.1.2 показано температурное изменение собственной концентрации носителей заряда в кремнии и германии.

Рисунок 1.1.2 - Температурная зависимость собственной концентрации носителей заряда в кремнии и германии

Механизм собственной электропроводности ковалентных полупроводников поясняет рисунок 1.1.3

Рисунок 1.1.3 - Схематическое представление собственной электропроводности полупроводника

Кремний и германий, являясь элементами IV группы системы Менделеева, кристаллизуются в структуре алмаза. В этой структуре каждый атом находится в тетраэдрическом окружении четырех ближайших соседей, с которыми взаимодействует силами ковалентных связей. Четыре валентных электрона любого атома идут на образование четырех ковалентных связей. Все химические связи оказываются замкнутыми и полностью насыщенными. Состояниям связанных электронов соответствуют энергетические уровни в валентной зоне. Фактически плоская сетка на рисунке 1.1.3 является проекцией кристаллической решетки на плоскость (100).

Валентные электроны, осуществляющие химические связи, не могут оторваться от своих атомов без значительных затрат энергии. Энергетические затраты на разрыв связи и освобождение электрона количественно выражают шириной запрещенной зоны. Атомы, потерявшие электроны, превращаются в положительно заряженные ионы, а незаполненная валентная связь содержит энергетическую вакансию для электронов, т. е. проявляет себя как дырка. Положительно заряженный ион может заимствовать электрон от любого соседнего атома, что приведет к перемещению дырки по кристаллу. Образовавшиеся электроны и дырки проводимости беспорядочно блуждают по решетке до тех пор, пока не рекомбинируют при встрече.

Под действием внешнего электрического поля движение носителей заряда приобретает направленный характер. При этом перемещение дырки к отрицательному полюсу источника можно представить как эстафетный переход валентных электронов от одного атома к другому в направлении против поля.

Рассмотренный случай собственной электропроводности представляет теоретический интерес, поскольку позволяет оценить потенциальные возможности материала. Работа большинства полупроводниковых приборов нарушается при появлении собственной электропроводности.

1.2 Электронный полупроводник

Электронным полупроводником или полупроводником типа n (от латинского negative - отрицательный) называется полупроводник, в кристаллической решетке которого (рис 1.3)помимо основных (четырехвалентных) атомов содержатся примесные пятивалентные атомы, называемые донорами. В такой кристаллической решетке четыре валентных электрона примесного атома заняты в ковалентных связях, а пятый (“лишний”) электрон не может вступить в нормальную ковалентную связь и легко отделяется от примесного атома, становясь свободным носителем заряда. При этом примесный атом превращается в положительный ион. При комнатной температуре практически все примесные атомы оказываются ионизированными. Наряду с ионизацией примесных атомов в электронном полупроводнике происходит тепловая генерация, в результате которой образуются свободные электроны и дырки, однако концентрация возникающих в результате генерации электронов и дырок значительно меньше концентрации свободных электронов, образующихся при ионизации примесных атомов, т.к. энергия, необходимая для разрыва ковалентных связей, существенно больше энергии, затрачиваемой на ионизацию примесных атомов. Концентрация электронов в электронном полупроводнике обозначается n n , а концентрация дырок - p n . Электроны в этом случае являются основными носителями заряда, а дырки - неосновными.

3 Дырочный полупроводник

Дырочным полупроводником или полупроводником типа p (от латинского positive - положительный) называется полупроводник, в кристаллической решетке которого содержатся примесные трехвалентные атомы, называемые акцепторами. В такой кристаллической решетке одна из ковалентных связей остается незаполненной. Свободную связь примесного атома может заполнить электрон, покинувший одну из соседних связей. При этом примесный атом превращается в отрицательный ион, а на том месте, откуда ушел электрон, возникает дырка.В дырочном полупроводнике, также как и в электронном, происходит тепловая генерация носителей заряда, но их концентрация во много раз меньше концентрации дырок, образующихся в результате ионизации акцепторов. Концентрация дырок в дырочном полупроводнике обозначается p p , они являются основными носителями заряда, а концентрация электронов обозначается n p , они являются неосновными носителями заряда.

4 Энергетические диаграммы полупроводников

Согласно представлениям квантовой физики электроны в атоме могут принимать строго определенные значения энергии или, как говорят, занимать определенные энергетические уровни. При этом, согласно принципу Паули, в одном и том же энергетическом состоянии не могут находиться одновременно два электрона. Твердое тело, каковым является полупроводниковый кристалл, состоит из множества атомов, сильно взаимодействующих друг с другом, благодаря малым межатомным расстояниям. Поэтому вместо совокупности разрешенных дискретных энергетических уровней, свойственных отдельному атому, твердое тело характеризуется совокупностью разрешенных энергетических зон, состоящих из большого числа близко расположенных энергетических уровней. Разрешенные энергетические зоны разделены интервалами энергий, которыми электроны не могут обладать и которые называются запрещенными зонами. При температуре абсолютного нуля электроны заполняют несколько нижних энергетических зон. Верхняя из заполненных электронами разрешенных зон называется валентной зоной, а следующая за ней незаполненная зона называется зоной проводимости. У полупроводников валентная зона и зона проводимости разделены запрещенной зоной. При нагреве вещества электронам сообщается дополнительная энергия, и они переходят с энергетических уровней валентной зоны на более высокие энергетические уровни зоны проводимости. В проводниках для совершения таких переходов требуется незначительная энергия, поэтому проводники характеризуются высокой концентрацией свободных электронов (порядка 10 22 см -3). В полупроводниках для того, чтобы электроны смогли перейти из валентной зоны в зону проводимости, им должна быть сообщена энергия не менее ширины запрещенной зоны. Это и есть та энергия, которая необходима для разрыва ковалентных связей.На рис. 1.4.1 представлены энергетические диаграммы собственного электронного и дырочного полупроводников, на которых через E C обозначена нижняя граница зоны проводимости, а через E V - верхняя граница валентной зоны. Ширина запрещенной зоны E з = E c - E v . В кремнии она равна 1,1 эВ, в германии - 0,7 эВ.

Рисунок 1.4.1 Энергетические диаграммы собственного электронного и дырочного полупроводников

С точки зрения зонной теории под генерацией свободных носителей заряда следует понимать переход электронов из валентной зоны в зону проводимости (рис. 1.4.1,а). В результате таких переходов в валентной зоне появляются свободные энергетические уровни, отсутствие электронов на которых следует трактовать как наличие на них фиктивных зарядов - дырок. Переход электронов из зоны проводимости в валентную зону следует трактовать как рекомбинацию подвижных носителей заряда. Чем шире запрещенная зона, тем меньше электронов способно преодолеть ее. Этим объясняется более высокая концентрация электронов и дырок в германии по сравнению с кремнием.

В электронном полупроводнике (рис.1.4.1,б) за счет наличия пятивалентных примесей в пределах запрещенной зоны вблизи дна зоны проводимости появляются разрешенные уровни энергии E D . Поскольку один пpимесный атом приходится примерно на 10 6 атомов основного вещества, то пpимесные атомы практически не взаимодействуют друг с другом. Поэтому пpимесные уровни не образуют энергетическую зону и их изображают как один локальный энергетический уровень Е D , на котором находятся "лишние" электроны пpимесных атомов, не занятые в ковалентных связях. энергетический интервал E и = E c -E D называется энергией ионизации. Величина этой энергии для различных пятивалентных примесей лежит в пределах от 0,01 до 0,05 эВ, поэтому "лишние" электроны легко переходят в зону проводимости.

В дырочном полупроводнике введение трехвалентных примесей ведет к появлению разрешенных уровней Е A (pис.1.4.1,в), которые заполняются электронами, переходящими на него из валентной зоны, в результате чего образуются дырки, переход электронов из валентной зоны в зону проводимости требует больших затрат энергии, чем переход на уровни акцепторов, поэтому концентрация электронов n p оказывается меньше концентрации n i , а концентрацию дыpок p p можно считать примерно равной концентрации акцепторов N A.

5 Основные и неосновные носители заряда

Носители заряда, концентрация которых в данном полупроводнике больше, называют основными, а носители, концентрация которых меньше,- неосновными. Так, в полупроводнике л-типа электроны являются основными носителями, а дырки - неосновными; в полупроводнике р-типа дырки - основными носителями, а электроны - неосновными.

При изменении концентрации примесей в полупроводнике изменяется положение уровня Ферми и концентрация носителей заряда обоих знаков, т. е. электронов и дырок. Однако произведение концентраций электронов и дырок в невырожденном полупроводнике при заданной температуре в условиях термодинамического равновесия есть величина постоянная, не зависящая от содержания примесей. Действительно, из (1.1.3) и (1.1.6) имеем:

где - собственная концентрация носителей заряда при данной температуре.

Если, например, в полупроводнике n-типа увеличить концентрацию доноров, то возрастет число электронов, переходящих в единицу времени с примесных уровней в зону проводимости. Соответственно возрастет скорость рекомбинации носителей заряда и уменьшится равновесная концентрация дырок. Выражение

часто называют соотношением «действующих масс» для носителей заряда. С его помощью всегда можно найти концентрацию неосновных носителей заряда, если известна концентрация основных.

1.6 Температурная зависимость концентрации носителей заряда

Элементы статистики электронов. В широком диапазоне температур и для различного содержания примесей имеют место температурные зависимости концентрации носителей заряда в полупроводнике n-типа, изображенные на рисунке 1.6.1

Рисунок 1.6.1 - Типичные зависимости концентрации носителей заряда в полупроводнике от температуры при различных концентрациях донорной примеси:

Рассмотрим характер кривой, соответствующей относительно малой концентрации доноров N д1 . В области низких температур увеличение концентрации электронов при нагревании полупроводника обусловлено возрастанием степени ионизации доноров (участок кривой между точками 1 к 4). Каждый ионизованный донор можно рассматривать как центр, захвативший дырку. Учитывая, что общее число энергетических состояний на донорных уровнях в расчете на единицу объема равно N д1 , для концентрации ионизованных доноров запишем:

(1.6.1)

где Э д1 - положение донорного уровня на энергетической шкале.

При низкой температуре концентрация ионизованных доноров равна концентрации электронов:

Отсюда следует, что

и соответственно

где

Из выражения (1.6.4) следует, что наклон прямой на участке 1-4 рисунка 1.6.1 характеризует энергию ионизации примесей. В процессе дальнейшего нагревания при некоторой температуре, соответствующей точке 4, все электроны с примесных уровней оказываются переброшенными в зону проводимости. При этом вероятность ионизации собственных атомов полупроводника еще ничтожно мала. Поэтому в достаточно широком температурном диапазоне (участок 4-6) концентрация носителей заряда остается постоянной и практически равной концентрации доноров. Этот участок температурной зависимости принято называть областью истощения примесей.

При относительно высоких температурах (участок кривой за точкой 6) доминирующую роль начинают играть перебросы электронов через запрещенную зону, т. е. происходит переход в область собственной электропроводности, где концентрация электронов равна концентрации дырок, а крутизна кривой определяется запрещенной зоной полупроводника.

Для большинства примесных полупроводников температура перехода к собственной электропроводности существенно превышает комнатную. Так, для германия n-типа с концентрацией доноров температура приблизительно равна 450 К. Значение зависит от концентрации примеси и ширины запрещенной зоны полупроводника.

С увеличением концентрации примеси участки кривых, соответствующие примесной электропроводности, смещаются вверх. Причину этого смещения легко понять с помощью формулы (1.6.4). Кроме того, надо принять во внимание, что с увеличением концентрации примесных атомов уменьшается расстояние между ними. Это приводит к более сильному взаимодействию электронных оболочек примесных атомов и расщеплению дискретных энергетических уровней в примесные зоны. Соответственно уменьшается энергия ионизации примесей. Вследствие указанной причины . Чем больше концентрация примесей, тем выше температура их истощения.

При достаточно большой концентрации доноров () их энергия ионизации обращается в ноль, так как образовавшаяся примесная зона перекрывается зоной проводимости. Такой полупроводник является вырожденным. Температурная зависимость концентрации носителей заряда в этом случае характеризуется ломаной линией с двумя прямолинейными отрезками 3-8 и 8-9. Концентрация электронов в вырожденном полупроводнике л-типа постоянна во всем диапазоне примесной электропроводности. Вырожденный полупроводник способен проводить электрический ток даже при очень низких температурах. Перечисленные свойства роднят вырожденные полупроводники с металлами. Поэтому их иногда называет полуметаллами.

Положение уровня Ферми. Уровень Ферми является одним из основных параметров, характеризующих электронный газ в полупроводниках. Положение уровня Ферми в невырожденном полупроводнике при низких температурах можно найти путем логарифмирования уравнения (1.6.2):

отсюда следует, что

(1.6.6)

Как видно, при очень низких температурах уровень Ферми в полупроводнике n-типа лежит посередине между дном зоны проводимости и донорным уровнем. С повышением температуры вероятность заполнения донорных состояний уменьшается, и уровень Ферми перемещается вниз. При высоких температурах полупроводник по свойствам близок к собственному, а уровень Ферми устремляется к середине запрещенной зоны, как показано на рисунке 1.6.2, а.

Рисунок 1.6.2, а - Температурное изменение положения уровня Ферми в примесном полупроводнике n - типа

Все рассмотренные закономерности аналогичным образом проявляются и в полупроводниках р-типа. Температурная зависимость уровня Ферми для дырочного полупроводника показана на рис. 1.6.2, б.

На рисунке 1.6.3 приведена температурная зависимость концентрации свободных электронов для полупроводника n-типа, легированного донорной примесью с концентрацией

Рисунок 1.6.2, б - Температурное изменение положения уровня Ферми в примесном полупроводнике p - типа

Рисунок 1.6.3 - Температурная зависимость концентрации электронов в полупроводнике n-типа

Как видно из рисунка 1.6.3, существуют три интервала температур, в которых изменение концентрации носителей заряда носит различный характер. Рассмотрим физические процессы, определяющие зависимость n(T). Область I (интервал температур от T=0 K до T S).C увеличением температуры концентрация свободных электронов возрастает за счет ионизации атомов полупроводника и атомов примеси. Но для ионизации атома полупроводника требуется сообщить электрону энергию, не меньшую E g , поэтому в рассматриваемой области низких температур собственная концентрация носителей заряда пренебрежимо мала. В полупроводнике n-типа имеется донорная примесь, дающая в запрещенной зоне энергетический уровень E D . Поэтому рост концентрации электронов в рассматриваемом диапазоне температур происходит главным образом благодаря ионизации атомов донорной примеси. Область I называется областью слабой ионизации или областью вымораживания. Границей этого интервала со стороны высоких температур является температура истощения примеси T S . Если качественно проанализировать связь температуры истощения примеси с глубиной залегания примесного уровня (E C -E D) и концентрацией примеси N д, то станет ясно, что T S пропорциональна указанной величине

Область II (интервал температур от T S до T I).При дальнейшем повышении температуры количество ионизированных атомов примеси и, соответственно, концентрация свободных электронов в зоне проводимости возрастают. Наконец, примесь полностью истощается, после чего концентрация свободных электронов остается практически постоянной и равной N d , так как вся примесь полностью ионизирована и не может служить источником дальнейшего роста числа свободных электронов, поэтому данная область называется областью истощения примеси. Температура T I является температурой перехода от примесной электропроводности к собственной.

Область 3 (интервал температур больших T I).При повышении температуры в этой области концентрация электронов возрастает за счет ионизации атомов полупроводника, наступает собственная электропроводность. Температура T I перехода от примесной электропроводности к собственной пропорциональна ширине запрещенной зоны и концентрации донорной примеси

(1.6.8)

В области слабой ионизации

(1.6.9)

В области истощения примеси

В области собственной проводимости

где n i - собственная концентрация носителей заряда в полупроводнике, определяемая как

(1.6.11)

здесь N C и N V - эффективная плотность состояний в зоне проводимости и валентной зоне, соответственно

(1.6.12)

(1.6.13)

7 Донорные и акцепторные полупроводники

Донорные полупроводники - получаются при добавлении в полупроводник элементов, от которых легко "отрывается" электрон. Например, если к четырехвалентному кремнию (или германию) добавить пятивалентный мышьяк (или фосфор), то последний использует свои 4 валентных электрона для создания 4 валентных связей в кристаллической решетке, а пятый электрон окажется "лишним", такой электрон легко отрывается от атома и начинает относительно свободно перемещаться по кристаллу. В таком случае в кристалле образуется избыток свободных электронов. Не следует забывать и об образовании пар электрон - дырка, как это рассматривалось в случае беспримесного полупроводника, однако для этого требуется значительно большая энергия, и поэтому вероятность такого процесса при комнатных температурах достаточно мала

На языке зонной теории появление "легко отрывающихся" электронов соответствует появлению в запрещенной зоне донорных уровней вблизи нижнего края зоны проводимости, как показано на рисунке 1.7.1

Рисунок 1.7.1 - Схема электронных состояний донорного полупроводника

При температурах порядка комнатной основной вклад в проводимость полупроводника будут давать электроны, перешедшие в зону проводимости с донорных уровней, вероятность же перехода электронов из валентной зоны будет очень мала. электрон акцепторный полупроводник температура

При увеличении температуры значительная часть электронов с малого числа донорных уровней перейдет в зону проводимости, кроме того, вероятность перехода электронов из валентной зоны в зону проводимости станет значительной. Поскольку число уровней в валентной зоне много больше, чем число примесных уровней, то с ростом температуры различие увеличивающихся концентраций электронов и дырок станет менее заметно; они будут отличаться на малую величину - концентрацию донорных уровней. Донорный характер полупроводника при этом будет все менее и менее выражен. И, наконец, при еще большем повышении температуры концентрация носителей заряда в полупроводнике станет очень большой, и донорный полупроводник станет аналогичен беспримесному полупроводнику, а затем - проводнику, зона проводимости которого содержит много электронов.

Уровень Ферми в донорном полупроводнике смещается вверх по шкале энергии, причем это смещение больше при низких температурах, когда концентрация свободных электронов значительно превышает число дырок. При повышении температуры, когда донорный характер полупроводника становится все менее и менее выраженным, уровень Ферми смещается в среднюю часть запрещенной зоны, как в беспримесном полупроводнике.

Акцепторные полупроводники - получаются при добавлении в полупроводник элементов, которые легко "отбирают" электрон у атомов полупроводника. Например, если к четырехвалентному кремнию (или германию) добавить трехвалентный индий, то последний использует свои три валентных электрона для создания трех валентных связей в кристаллической решетке, а четвертая связь окажется без электрона. Электрон из соседней связи может перейти на это пустое место, и тогда в кристалле получится дырка. Это показано на рисунке 1.7.2

В таком случае в кристалле образуется избыток дырок. Не следует забывать и об образовании пар электрон - дырка, как это рассматривалось в случае беспримесного полупроводника, однако вероятность этого процесса при комнатных температурах достаточно мала.

Рисунок 1.7.2 - Образование и движение электронов и дырок в полупроводниках

На языке зонной теории переход электрона из полноценной ковалентной связи в связь с недостающим электроном соответствует появлению в запрещенной зоне акцепторных уровней вблизи нижнего края зоны проводимости. Схема такого состояния показана на рисунке 1.7.3

Рисунок 1.7.3 - Схема электронных состояний акцепторного полупроводника

Электрону для такого перехода из валентной зоны на акцепторный уровень (при этом электрон просто переходит из одной ковалентной связи в почти такую же другую связь) требуется меньше энергии, чем для перехода из валентной зоны в зону проводимости (рисунок 1.7.3), то есть для "полного ухода" электрона из ковалентной связи.

При температурах порядка комнатной основной вклад в проводимость полупроводника будут давать дырки, образовавшиеся в валентной зоне после перехода валентных электронов на акцепторные уровни, вероятность же перехода электронов из валентной зоны в зону проводимости будет очень мала.

При увеличении температуры значительная часть малого числа акцепторных уровней окажется занятой электронами. Кроме того, вероятность перехода электронов из валентной зоны в зону проводимости станет значительной. Поскольку число уровней в валентной зоне много больше, чем число примесных уровней, то с ростом температуры различие увеличивающихся концентраций электронов и дырок станет менее заметно, так как они отличаются на малую величину - концентрацию акцепторных уровней. Акцепторный характер полупроводника при этом будет все менее и менее выражен. И, наконец, при еще большем повышении температуры концентрация носителей заряда в полупроводнике станет очень большой, и акцепторный полупроводник станет аналогичен сначала беспримесному полупроводнику, а затем - проводнику.

Можно показать, что уровень Ферми в акцепторном полупроводнике смещается вниз по шкале энергии, причем это смещение больше при низких температурах, когда концентрация дырок значительно превышает концентрацию свободных электронов. При повышении температуры, когда акцепторный характер полупроводника становится все менее и менее выраженным, уровень Ферми смещается в среднюю часть запрещенной зоны, как в беспримесном полупроводнике.

Итак, при постепенном увеличении температуры наблюдается постепенное превращение как донорного, так и акцепторного полупроводника в полупроводник аналогичный беспримесному, а затем - в полупроводник аналогичный по проводимости проводнику. В этом заключается причина отказа при перегреве полупроводниковых устройств, состоящих из нескольких областей полупроводников донорного и акцепторного типов. При увеличении температуры различия между областями постепенно пропадает и в итоге полупроводниковое устройство превращается в монолитный кусок хорошо проводящего ток полупроводника.

8 Зависимость концентрации электронов от энергии уровня Ферми


Концентрация электронов в зоне проводимости от донорных примесей

определяется положением уровня Ферми и находится из выражения, связывающего ее с уровнем Ферми,

где EF - энергия уровня Ферми;

Еc- энергия, соответствующая дну зоны проводимости;

k-постоянная Больцмана;

Т-абсолютная температура;

h-постоянная Планка;

mn - эффективная масса электрона.

Для построения зависимости концентрации электронов в зоне проводимости n от уровня Ферми необходимо подставить в уравнение

1.9 Положение уровня Ферми и концентрация свободных носителей заряда в собственных полупроводниках

В собственном беспримесном полупроводнике положение уровня Ферми можно найти из условия, что количество электронов в зоне проводимости равно количеству дырок в валентной зоне: индекс i здесь и далее обозначает принадлежность к собственному полупроводнику.

Условие (1.9.1) приводит к тому, что уровень Ферми должен располагаться приблизительно посередине запрещенной зоны. Если уровень Ферми расположить ближе к зоне проводимости, то в таком полупроводнике электронов будет много больше, чем дырок, так как степень заполнения f(E) состояний у дна зоны проводимости существенно больше, чем степень их незаполненности (1-f(E)) у потолка валентной зоны. Функция распределения f(E) для этого случая представлена на рисунке 1.9.1, а, где для удобства сопоставления с энергетическими схемами ось энергий направлена вверх.

Рисунок 1.9.1, а - Функции распределения f(E) в полупроводниках п-типа ().

Рисунок 1.9.2, б - Функции распределения f(E) в полупроводниках п-типа ()

Наоборот, если поместить уровень Ферми вблизи валентной зоны, то дырок в валентной зоне станет много больше, чем электронов в зоне проводимости. Такая функция распределения представлена на рисунке 1.9.2,б

Таким образом, обеспечить равенство количеств электронов и дырок можно только в том случае, если расположить уровень Ферми посередине запрещенной зоны. В общем случае, однако, уровень Ферми в собственном полупроводнике расположен лишь приблизительно посередине запрещенной зоны. Дело в том, что функции плотности состояний в зоне проводимости и валентной зоне могут отличаться друг от друга. Например, если то согласно 1.9.2, б и 1.9.3 плотность состояний в зоне проводимости выше, чем в валентной зоне (при одинаковом расстоянии рассматриваемых интервалов энергии от краев соответствующих зон).

Рисунок 1.9.3 - Зависимость концентрации свободных носителей тока от температуры в собственном полупроводнике

В таком случае для выравнивания концентраций электронов и дырок следует несколько опустить уровень Ферми к валентной зоне. Наоборот, если то уровень Ферми должен быть несколько выше середины запрещенной зоны.

Точное значение энергии Ферми в собственном полупроводнике получим

При уровень Ферми расположен посередине запрещенной зоны, при повышении температуры он смещается к той зоне, где меньше плотность состояний. Такая зависимость показана на рисунке 1.9.4

Рисунок 1.9.4 - Зависимость энергии Ферми (штрихпунктирная линия) от температуры в собственном полупроводнике

Так как обычно не очень сильно отличается от , то для полупроводников с шириной запрещенной зоны эВ или больше можно считать . Для узкозонных же полупроводников смещение уровня Ферми от середины запрещенной зоны нельзя не учитывать.

Найдём концентрацию свободных носителей тока в собственном полупроводнике:

Из (1.6.4) видно, что равновесная концентрация носителей тока в собственном полупроводнике определяется шириной запрещенной зоны и температурой полупроводника, причем зависимость , от Т и очень резкая. Так, уменьшение с 1,12 эВ (кремний) до 0,08 эВ (серое олово) приводит при комнатной температуре к увеличению , на 9 порядков; увеличение температуры германия со 100 до 600 К повышает на 17 порядков. Прологарифмируем выражение (1.9.4)

(1.9.5)

Так как зависит от температуры гораздо слабее, чем по степенному закону, то график зависимости от представляет собой приблизительно прямую линию с угловым коэффициентом .

Для узкозонных полупроводников при повышенных температурах уровень Ферми может оказаться слишком близко (ближе, чем на () к одной из зон или даже к обеим зонам. В таком случае пользоваться выражениями и для невырожденных газов электронов и дырок нельзя и уравнение (1.9.5) следует решать численно.

2. Вычисление температурных зависимостей электрофизических параметров полупроводников

Заряд электрона

Масса покоя атома

Энергия ионизации донорного уровня

- массы электронов по главным осям элипсоидов

- массы дырок по главным осям элипсоидов


Число долин в зоне проводимости

Число долин в валентной зоне

Концентрация донорных атомов

- постоянная Больцмана

Ширина запрещённой зоны

- температура

Постоянная Планка

После чего последовала необходимость перевести их в систему СИ. Теперь, когда все данные перед нами, можно начинать с приближённого расчёта зависимости концентрации электронов от температуры.

2.1 Приближённый расчёт зависимости концентрации электронов от температуры

Для начала я нашла среднюю температуру и эффективную массу электронов и дырок и , которые далее необходимы для вычисления эффективной плотности состояний в валентной зоне и зоне проводимости и

2 Аналитический расчёт зависимости концентрации свободных носителей заряда и положения уровня Ферми от температуры

Аналитический расчёт позволяет найти точные значения необходимых параметров.

Для начала я нашёл точные значения температуры собственной проводимости и температуры истощения примеси , используя функцию root, которая используется для нахождения нулей функции.

2.1 Нахождение точных значений и

Для построения графика зависимости концентрации дырок от температуры для различных областей, представленного в приложении В, я использовал точные значения концентраций в тех же трёх областях.

2.2 Область низких температур T11 (точные значения)

Данная работа является фундаментом приобретения высоких профессиональных навыков и рассчитана на широкий круг читателей - инженеров, научных работников и студентов младших и старших курсов технических вузов.

Необходимая информация, приведённая в моей курсовой работе, служит для привлечения молодых предприимчивых студентов к активной творческой деятельности в данном развивающимся направлении.

Список используемых источников

1. Пасынков В.В., Сорокин В.С. Материалы электронной техники 3-е изд. - СПб.: Издательство «Лань», 2001. - с 91-101.

. Епифанов Г.И., Мома Ю.А. Физические основы конструирования и технологии РЭА и ЭВА. - М.: Сов. Радио,1979. - 350с.

. Павлов П.В., Хохлов А.Ф. Физика твердого тела. Учебное пособие для вузов. - М.: Высш. шк., 2000.-384 с.(16 экз.).

. Бонч-Бруевич В.Л., Калашников С.Г. Физика полупроводников, 1977 год - с 167-200.

. Ансельм А.И. Введение в теорию полупроводников. С 225-231.

Приложение В (обязательное)

Графики зависимостей

Рисунок 1 - График зависимости концентрации носителей заряда от температуры (приближённые значения)

Рисунок 2 - График зависимости концентрации носителей заряда от температуры (точные значения)

Рисунок 3 - График зависимости положения уровней Ферми от температуры