Все о тюнинге авто

Молекулярная организация ядерного порового комплекса. Ядерные поры: описание, строение и функции. Свойства ядерных пор

  • 2.5. Болезнетворное действие тепловой энергии. Перегревание. Тепловой удар
  • 2.6. Повреждающее действие лучей солнечного спектра
  • 2.6.1. Действие ультрафиолетового излучения
  • 2.6.2. Повреждающее действие излучения лазеров
  • 2.7. Болезнетворное действие электрического тока
  • 2.8. Повреждающее действие ионизирующих излучений
  • 2.8.1. Общая характеристика повреждающего действия ионизирующих излучений
  • 2.8.2. Механизмы действия ионизирующей радиации на живые организмы. Общие вопросы патогенеза
  • 2.8.3. Действие ионизирующей радиации на клетки
  • 2.8.4. Действие ионизирующей радиации на организм
  • 2.9. Действие факторов космического полета. Гравитационная патофизиология
  • Глава 3 патофизиология клетки
  • 3.1. Виды повреждений и гибели клеток. Универсальный ответ клетки на повреждение
  • 3.2. Механизмы повреждения мембранных структур клетки
  • 3.2.1. Нарушение барьерной функции биологических мембран
  • 3.2.2. Нарушение структурных (матричных) свойств липидного бислоя
  • 3.3. Изменения внутриклеточного метаболизма при повреждении
  • 3.4. Нарушение структуры и функций внутриклеточных органелл при повреждении
  • 3.5. Повреждение генетического аппарата клетки
  • 3.6. Повреждение клеток при гипоксии
  • 3.7. «Порочный круг» клеточной патологии
  • Глава 4 общие реакции организма на повреждение
  • 4.1. Общий адаптационный синдром
  • 4.1.1. История развития учения о стрессе
  • 4.1.2. Определение понятия стресс, его этиология и виды
  • 4.1.3. «Триада Селье» и стадии общего адаптационного синдрома
  • 4.1.4. Схема патогенеза общего адаптационного синдрома
  • 4.1.5. Механизм положительного (адаптогенного) и негативного действия гормонов стресса
  • 4.1.6. Механизмы стрессорных повреждений и развитие «стресс-болезней»
  • 4.1.7. Системы естественной профилактики стрессорных повреждений
  • 4.2. Реакции острой фазы
  • 4.3. Шок
  • 4.4. Кома
  • Глава 5 роль наследственности, конституции и возраста в патологии
  • 5.1. Наследственность и патология. Этиология и патогенез наследственных болезней
  • 5.1.1. Изменчивость наследственных признаков как основа патологии
  • 5.1.2. Мутации как этиологический фактор наследственной
  • 5.1.3. Феноменология проявления генов
  • 5.1.4. Классификация наследственной патологии
  • 5.1.5. Этиология и патогенез генных болезней
  • 5.1.6. Этиология и патогенез хромосомных болезней
  • 5.1.7. Генетические факторы патогенеза мультифакториальных
  • 5.1.8. Генетические болезни соматических клеток
  • 5.1.9. Болезни с нетрадиционным типом наследования
  • 5.1.10. Методы изучения и диагностики наследственных патологий
  • 5.2. Роль конституции в патологии
  • 5.2.1. Классификация типов конституции
  • 5.2.2. Типы конституции и болезни
  • 5.2.3. Факторы, влияющие на формирование типа конституции
  • 5.3. Значение возраста в возникновении и развитии болезней
  • 5.3.1. Возраст и болезни
  • 5.3.2. Старение
  • Глава 6 реактивность и резистентность организма, их роль в патологии
  • 6.1. Определение понятия «реактивность организма»
  • 6.2. Виды реактивности
  • 6.2.1. Биологическая (видовая) реактивность
  • 6.2.2. Групповая реактивность
  • 6.2.3. Индивидуальная реактивность
  • 6.2.4. Физиологическая реактивность
  • 6.2.5. Патологическая реактивность
  • 6.2.6. Неспецифическая реактивность
  • 6.2.7. Специфическая реактивность
  • 6.3. Формы реактивности
  • 6.4. Реактивность и резистентность
  • 6.5. Факторы, определяющие реактивность
  • 6.5.1. Роль внешних факторов
  • 6.5.2. Роль конституции (см. Раздел 5.2)
  • 6.5.3. Роль наследственности
  • 6.5.4. Значение возраста (см. Раздел 5.3)
  • 6.6. Основные механизмы реактивности (резистентности)организма
  • 6.6.1. Функциональная подвижность и возбудимость нервной системы в механизмах реактивности
  • 6.6.2. Функция эндокринной системы и реактивность
  • 6.6.3. Функция иммунной системы и реактивность
  • 6.6.4. Функция элементов соединительной ткани и реактивность
  • 6.6.5. Обмен веществ и реактивность
  • Часть II типовые патологические процессы глава 7 патофизиология иммунитета
  • 7.1. Функциональная организация иммунной
  • 7.1.1. Основные понятия
  • 7.1.2. Клетки иммунной системы
  • 7.1.3. Молекулы иммунной системы
  • 7.2. Иммунный ответ
  • 7.2.1. Стадии иммунного ответа
  • 2. Гуморальный иммунный ответ (в-клеточный).
  • 7.2.2. Регуляция иммунного ответа
  • 7.3. Иммунодефицитные состояния
  • 7.4. Реакции гиперчувствительности
  • 7.5. Отторжение трансплантата
  • Глава 8 аллергия. Аутоиммунные расстройства
  • 8.1. Аллергия
  • 8.1.1. Механизмы перехода защитной иммунной реакции в аллергическую (реакцию повреждения)
  • 8.1.2. Критерии аллергического состояния
  • 8.1.3. Этиология аллергических реакций и заболеваний
  • 8.1.4. Классификация аллергических реакций
  • 8.1.5. Общий патогенез аллергических реакций
  • III. Стадия клинических проявлений (патофизиологическая).
  • 8.1.6. Аллергические реакции, развивающиеся по I типу гиперчувствительности
  • 8.1.7. Аллергические реакции, развивающиеся по II (цитотоксическому) типу гиперчувствительности
  • 8.1.8. Аллергические реакции, развивающиеся по III (иммунокомплексному) типу гиперчувствительности
  • 8.1.9. Аллергические реакции, развивающиеся по IV (опосредованному т-клетками) типу гиперчувствительности
  • 8.2. Псевдоаллергические реакции
  • 8.3. Аутоиммунные расстройства
  • Глава 9 патофизиология периферического (органного) кровообращения и микроциркуляции
  • 9.1. Артериальная гиперемия
  • 9.1.1. Причины и механизм артериальной гиперемии
  • 9.1.2. Виды артериальной гиперемии
  • 9.1.3. Микроциркуляция при артериальной гиперемии
  • 9.1.4. Симптомы артериальной гиперемии
  • 9.1.5. Значение артериальной гиперемии
  • 9.2. Ишемия
  • 9.2.1. Причины ишемии
  • 9.2.2. Микроциркуляция при ишемии
  • 9.2.3. Симптомы ишемии
  • 9.2.4. Компенсация нарушения притока крови при ишемии
  • 9.2.5. Изменения в тканях при ишемии
  • 9.3. Венозный застой крови (венозная гиперемия)
  • 9.3.1. Причины венозного застоя крови
  • 9.3.2. Микроциркуляция в области венозного застоя крови
  • 9.3.3. Симптомы венозного застоя крови
  • 9.4. Стаз в микрососудах
  • 9.4.1. Виды стаза и причины их развития
  • 9.4.2. Нарушения реологических свойств крови, вызывающие стаз в микрососудах
  • 9.4.3. Последствия стаза крови в микрососудах
  • 9.5. Патофизиология мозгового кровообращения
  • 9.5.1. Нарушения и компенсация мозгового кровообращения при артериальной гипер- и гипотензии
  • 9.5.2. Нарушения и компенсация мозгового кровообращения при венозном застое крови
  • 9.5.3. Ишемия головного мозга и ее компенсация
  • 9.5.4. Нарушения микроциркуляции, вызванные изменениями реологических свойств крови
  • 9.5.5. Артериальная гиперемия в головном мозге
  • 9.5.6. Отек головного мозга
  • 9.5.7. Кровоизлияния в мозг
  • Глава 10 воспаление
  • 10.1. Основные теории воспаления
  • 10.2. Этиология воспаления
  • 10.3. Экспериментальное воспроизведение воспаления
  • 10.4. Патогенез воспаления
  • 10.4.1. Роль повреждения ткани в развитии воспаления
  • 10.4.2. Медиаторы воспаления
  • 10.4.3. Расстройства кровообращения и микроциркуляции в воспаленной ткани
  • 10.4.4. Экссудация и экссудаты
  • 10.4.5. Выход лейкоцитов в воспаленную ткань (эмиграция лейкоцитов)
  • 10.4.6. Восстановительные процессы в воспаленной ткани
  • 10.5. Хроническое воспаление
  • 10.6. Общие проявления воспаления
  • 10.7. Роль реактивности в воспалении
  • 10.8. Виды воспаления
  • 10.9. Течение воспаления
  • 10.10. Исходы воспаления
  • 6. Переход острого воспаления в хроническое.
  • 10.11. Значение воспаления для организма
  • Глава 11 лихорадка
  • 11.1. Онтогенез лихорадки
  • 11.2. Этиология и патогенез лихорадки
  • 11.3. Стадии лихорадки
  • 11.4. Виды лихорадки
  • 11.5. Обмен веществ при лихорадке
  • 11.6. Работа органов и систем при лихорадке
  • 11.7. Биологическое значение лихорадки
  • 11.8. Лихорадоподобные состояния
  • 11.9. Отличие лихорадки от перегревания
  • 11.10. Принципы жаропонижающей терапии
  • Глава 12 патофизиология типовых нарушений обмена веществ
  • 12.1. Патофизиология энергетического и основного обменов
  • 12.1.1. Нарушения обмена энергии
  • 12.1.2. Нарушения основного обмена
  • 12.2. Голодание
  • 12.2.1. Лечение голоданием
  • 12.2.2. Белково-калорийная недостаточность
  • 12.3. Патофизиология обмена витаминов
  • 12.3.1. Жирорастворимые витамины Витамины группы а
  • 12.3.2. Водорастворимые витамины
  • 12.4. Патофизиология углеводного обмена
  • 12.4.1. Нарушение углеводного обмена на этапе переваривания (расщепления) и всасывания
  • 12.4.2. Нарушение углеводного обмена на этапе депонирования гликогена
  • 12.4.3. Нарушения промежуточного обмена углеводов
  • 12.4.4. Нарушение выделения глюкозы почками
  • 12.4.5. Нарушение регуляции углеводного обмена
  • 12.4.6. Нарушения углеводного обмена
  • 12.4.7. Сахарный диабет
  • 12.4.8. Метаболические осложнения сахарного диабета
  • 12.5. Патофизиология обмена липидов
  • 12.5.1. Нарушение переваривания и всасывания липидов
  • 12.5.2. Нарушение транспорта липидов
  • 12.5.3. Нарушение перехода липидов в ткани. Гиперлипемия
  • 12.5.4. Нарушение депонирования жиров
  • 12.5.5. Ожирение и жировая инфильтрация печени
  • 12.5.6. Нарушение обмена липидов и ненасыщенных жирных кислот
  • 12.5.7. Нарушение обмена фосфолипидов
  • 12.5.8. Нарушение обмена холестерина
  • 12.6. Патофизиология белкового обмена
  • 12.6.1. Нарушение расщепления белков пищи и усвоения образующихся аминокислот
  • 12.6.2. Нарушение процессов эндогенного синтеза и распада белка
  • 12.6.3. Нарушение обмена аминокислот
  • 12.6.4. Нарушение конечного этапа обмена белка и аминокислот
  • 12.6.5. Нарушение белкового состава плазмы крови
  • 12.7. Патофизиология обмена нуклеиновых кислот
  • 12.7.1. Нарушение эндогенного синтеза днк и рнк
  • 12.7.2. Нарушения конечного этапа обмена нуклеиновых кислот
  • 12.8. Расстройства водно-электролитного обмена (дисгидрии). Обезвоживание. Oteки
  • 12.8.1. Изменения распределения и объема воды в организме человека
  • 12.8.2. Потери и потребность в воде организма человека в норме и при патологии
  • 12.8.3. Виды обезвоживания и причины их развития
  • 12.8.4. Влияние обезвоживания на организм
  • 12.8.5. Задержка воды в организме
  • 12.8.6. Отеки и водянки
  • 12.8.7. Принципы терапии водно-электролитных нарушений
  • 12.9. Патофизиология минерального обмена
  • 12.9.1. Нарушения обмена макроэлементов
  • 12.9.2. Нарушения обмена микроэлементов
  • 12.10. Нарушения кислотно-основного состояния
  • 3. Парциальное давление (напряжение) кислорода в крови (рО2)
  • 12.10.1. Газовый ацидоз
  • 12.10.2. Газовый алкалоз
  • 12.10.3. Негазовый ацидоз
  • 12.10.4. Негазовый алкалоз
  • 12.10.5. Сочетанные нарушения кислотно-основного состояния
  • Глава 13 патофизиология тканевого роста
  • 13.1. Нарушения основных периодов роста человека
  • 13.2. Гипо- и гипербиотические процессы
  • 13.2.1. Гипобиотические процессы
  • 13.2.2. Гипербиотические процессы
  • 13.3. Опухолевый рост
  • 13.3.1. Эпидемиология опухолевых заболеваний у человека
  • 13.3.2. Опухоли доброкачественные и злокачественные
  • 13.3.3. Этиология опухолей
  • 13.3.4. Биологические особенности опухолей, механизм их развития
  • 13.3.5. Патогенез опухолевого роста (онкогенез)
  • 13.3.6. Взаимоотношение опухоли и организма
  • 13.4. Трансплантация клеток, тканей и органов
  • Цветная вклейка
  • 3.2.1. Нарушение барьерной функции биологических мембран

    Важную роль в повреждении мембран играют процессы их механического растяжения в результате нарушения осмотического равновесия в клетках. Если поместить эритроциты в гипотонический раствор, то вода будет входить в клетки, они примут сферическую форму, а затем произойдет гемолиз. Митохондрии также набухают в гипотонических средах, но происходит разрыв только внешней мембраны; внутренняя остается целой, хотя теряет способность задерживать небольшие молекулы и ионы. В результате митохондрии утрачивают способность к окислительному фосфорилированию.

    Сходные явления наблюдаются и в целых клетках и тканях в условиях патологии. Так, в результате активации фосфолипазы А 2 мембран митохондрий при гипоксии они становятся проницаемыми для ионов калия. Если в этих условиях восстановить оксигенацию ткани, то на мембранах митохондрий восстановится мембранный потенциал (со знаком «минус» внутри) и митохондрии будут «насасывать» ионы калия, вслед за которыми в матрикс входит фосфат. Концентрация ионов внутри митохондрий возрастает, и органеллы набухают. Это приводит к растяжению мембран и их дальнейшему повреждению.

    Молекулярные механизмы увеличения проницаемости липидного слоя мембран для ионов. При изучении молекулярных основ проницаемости липидного слоя широко используются модельные мембранные системы: изолированные мембранные структуры (эритроциты, митохондрии, везикулы саркоплазматического ретикулума), а также искусственные фосфолипидные мембраны (бислойные липидные мембраны и фосфолипидные везикулы - липосомы). Изучение такого рода систем показало, что сам по себе липидный слой практически непроницаем для ионов. При действии различных химических и физических факторов он становится проницаемым по одной из трех причин (или их комбинаций):

    1. В липидном бислое, микровязкость которого близка к вязкости оливкового масла, появляется жирорастворимое вещество, способное связывать ионы. Механизм переноса ионов в этом случае напоминает «перевоз пассажиров в лодке с одного берега на

    другой» и называется «челночным», или переносом с помощью подвижного переносчика. Примером подвижного переносчика может служить ионофорный антибиотик валиномицин, который образует комплекс с ионами калия, растворимый в липидной фазе мембраны. К числу подвижных переносчиков, возможно, относятся водорастворимые продукты перекисного окисления липидов, в присутствии которых, как оказалось, увеличивается проницаемость мембраны для ионов водорода.

    2. В липидном слое появляются вещества, молекулы которых, собираясь вместе, образуют канал через мембрану. Сквозь такой канал ионы могут проходить с одной стороны мембраны на другую. Каналы образуются молекулами некоторых антибиотиков, например грамицидина А и полимиксина. Продукты перекисного окисления липидов также могут образовывать каналы в липидном слое, если в растворе есть ионы кальция. Продукты расщепления некоторых фосфолипидов (в частности, кардиолипина) фосфолипазой А 2 образуют каналы для одновалентных катионов.

    3. Электрическая прочность липидного слоя мембраны снижается, и ее участок разрушается электрическим током, который возникает под влиянием разности потенциалов, существующей на мембране. Такое явление носит название «электрического пробоя» (см. ниже). Формирование в мембране «пор» с индукцией пробоя мембраны лежит в основе нарушений барьерной функции мембраны при адсорбции на липидном бислое полиэлектролитов, чужеродных для клетки белков, антител.

    Свободные радикалы. Свободнорадикальное (перекисное) окисление липидов (ПОЛ) . Хорошо известно, что в органических молекулах (включая те, из которых состоит наш организм) электроны на внешней электронной оболочке располагаются парами: одна пара на каждой орбитали. Свободные радикалы отличаются от обычных молекул тем, что у них на внешней электронной оболочке имеется неспаренный (одиночный) электрон. Это делает их химически активными, поскольку они стремятся вернуть себе недостающий электрон, отняв его от окружающих молекул и тем самым повреждая их. Свободные радикалы вступают в реакции с неорганическими и органическими соединениями - белками, липидами, углеводами, нуклеиновыми кислотами, инициируют аутокаталитические реакции, в ходе которых молекулы, с которыми они реагируют, также превращаются в свободные радикалы. Таким образом, сво-

    бодные радикалы - высокоактивные молекулы, способные разрушать структуры клетки.

    Основным источником радикалов является молекулярный кислород. К кислородным радикалам относятся: NO* (оксид азота или нитроксид), RO* (алкоксильный радикал), RO* 2 (перекисный или пероксидный радикал), O* 2 - (супероксидный анион-радикал или супероксид), HO* 2 (гидроперекисный радикал, HO* (гидроксильный радикал).

    В целом все радикалы, образующиеся в организме человека, можно разделить на природные и чужеродные. В свою очередь, природные радикалы можно разделить на первичные, вторичные и третичные (рис. 3-2).

    Первичные радикалы - те радикалы, образование которых осуществляется при участии определенных ферментных систем (НАДФН-оксидазы, NO-синтазы, циклооксигеназы, липооксигеназы, монооксигеназы, ксантиноксидазы и др.). Прежде всего к первичным радикалам относятся семихиноны, образующиеся в реакциях таких переносчиков электронов, как коэнзим Q (обозначим радикал как Q*) и флавопротеины, O* 2 - , NO*.

    Рис. 3-2. Классификация радикалов в организме человека

    Из первичного радикала - O* 2 - , а также в результате других реакций в организме образуются весьма активные молекулярные соединения: перекись водорода (Н 2 О 2), гипохлорит (HOCl), гидроперекиси липидов. Под действием ионов металлов переменной валентности, в первую очередь Fe 2 +, из этих веществ образуются вторичные радикалы (HO*, радикалы липидов), которые оказывают разрушительное действие на клеточные структуры.

    Для защиты от повреждающего действия вторичных радикалов в организме используется большая группа веществ, называемых антиоксидантами (см. ниже), к числу которых принадлежат «ловушки» («перехватчики») свободных радикалов. Примером последних служат альфа-токоферол, тироксин, восстановленный убихинон (QH 2) и женские стероидные гормоны. Реагируя с липидными радикалами, эти вещества сами превращаются в радикалы антиоксидантов, которые можно рассматривать как третичные радикалы.

    Наряду с этими радикалами, постоянно образующимися в том или ином количестве в клетках и тканях организма человека, разрушительное действие могут оказывать радикалы, появляющиеся при таких воздействиях, как ионизирующее излучение, ультрафиолетовое облучение или даже освещение интенсивным видимым светом, например светом лазера. Такие радикалы можно назвать чужеродными. К ним принадлежат также радикалы, образующиеся из попавших в организм посторонних соединений, ксенобиотиков, многие из которых оказывают токсическое действие именно благодаря свободным радикалам, образующимся при метаболизме этих соединений.

    Однако не следует считать, что свободные радикалы являются только повреждающим клетки фактором. Примером положительной роли этих соединений является система клеточного иммунитета. Например, фагоцитирующие лейкоциты (к которым относятся гранулоциты и моноциты крови и тканевые клетки - макрофаги), соприкасаясь с поверхностью бактерий в очаге воспаления, активируются и с помощью НАДФН-оксидазы - фермента, встроенного в мембрану клеток и внутриклеточных везикул-фагосом, генерируют из О 2 супероксидный анион-радикал, обладающий бактерицидным действием (рис. 3-3). Нитроксид (NO *), выделяясь клетками-фагоцитами вместе с супероксид-радикалами, используется для борьбы с микробами грибковой природы. Для осуществления своих киллерных функций фагоциты используют также образующийся из перекиси водорода гипохлорит (OCl -). Реакция

    Рис. 3-3. Реакции супероксидного радикала

    образования гипохлорита катализируется с помощью специального фермента - миелопероксидазы: Н 2 О 2 + Cl - - Н 2 О + ОО - . Гипохлорит сам по себе не является свободным радикалом (относится к группе активных метаболитов кислорода нерадикальной природы), но взаимодействует с органическими молекулами через радикальные механизмы. При участии гипохлорита образуются такие высокоактивные молекулы, как гидроксильный радикал (Fe 2 + + OCl - + H+ - Fe 3 + + HO" + Cl -), синглетный кислород (Ю 2). В активированных лейкоцитах гидроксильный радикал (HO") может образовываться также при разложении перекиси водорода в присутствии ионов двухвалентного железа (Н 2 О 2 + Fe 2 + - Fe 3 + + HO" + HO"). Цитотоксическое действие OCl - и HO" заключается в их способности разрушать SH-гругты и другие аминокислотные остатки белков, индуцировать разрывы цепей ДНК и РНК, усиливать активность ПОЛ, протеиназ, белков системы комплемента, ингибировать белки деления и ферменты бактерий.

    Свободные радикалы выполняют также и другие, в том числе регуляторные, функции. Так, для некоторых тканей, в частности мозга, характерен повышенный синтез простагландинов, тромбоксанов и лейкотриенов, образующихся из арахидоновой кислоты при индукции ПОЛ с участием супероксид-аниона. Радикал убихинона (коэнзима Q) - семихинон (HQ") участвует в цепи переноса электронов; при нарушении работы дыхательной цепи он может стать источником других радикалов, в первую очередь радикалов кислорода.

    Кроме того, свободные радикалы активно участвуют в процессах передачи клеточного сигнала, могут выступать в качестве вто-

    ричных мессенджеров в сигнальных каскадах, запускаемых ангиотензином II, эндотелином и др. Так, NO", образующийся клетками стенок кровеносных сосудов (эндотелия) при участии гемсодержащего фермента NO-синтазы, играет ключевую роль в регуляции тонуса сосудов и кровяного давления: его недостаток приводит к гипертензии, избыток - к гипотензии. Нарушение метаболизма NO вызывает заболевания, связанные с изменением кровяного давления. Радикалы, образующиеся в цитозоле клетки в ответ на стимуляцию факторами роста, участвуют в регуляции пролиферативного процесса.

    В нормальных условиях радикалы кислорода не накапливаются в клетках. Состояние клеток, характеризующееся избыточным содержанием в них радикалов кислорода, называется окислительным стрессом. Окислительный стресс развивается тогда, когда окислительно-восстановительный гомеостаз (редокс-гомеостаз или баланс) в клетке нарушается. Этот дисбаланс может быть обусловлен гиперпродукцией активных форм кислорода или недостаточностью системы антиоксидантной защиты, в состав которой входят низкомолекулярные соединения растительного и животного происхождения (содержатся в плазме крови, в цитоплазме или мембранах клеток). Выделяют несколько основных групп антиоксидантов:

    1) ферментативные - супероксиддисмутаза, каталаза, ферменты глутатионового цикла (глутатионпероксидаза, глутатионредуктаза, глутатион-S-трансфераза);

    2) фенольные - витамин Е, коэнзим Q, флавоноиды (кверцетин, рутин, гесперетин и др.);

    3) каротиноиды - жирорастворимые растительные пигменты, входящие в состав овощей и фруктов (морковь, шпинат, манго, абрикос и др.);

    4) аскорбиновая кислота (витамин С) - содержится в свежих овощах, фруктах и ягодах (петрушка, молодая капуста, шиповник, черная смородина, лимон, апельсин, папайя, яблоко и др.), в организме в большом количестве обнаруживается в надпочечниках, гипофизе, вилочковой железе;

    6) хелаторы ионов металлов переменной валентности - трансферрины, ферритин, церулоплазмин, металлотионеины, мочевая кислота и др.

    По принципу антиокислительного действия выделяют антиоксиданты прямого (направленного) и непрямого (опосредованного) действия. Эффективность последних проявляется только в живых системах (in vivo), в то время как соединения направленного типа действия могут подавлять окислительные процессы с участием активных метаболитов кислорода как in vivo, так и in vitro.

    В естественных условиях антиоксиданты (супероксиддисмутаза, каталаза, таурин и др.) защищают фагоциты от аутодеструкции собственными радикалами (супероксидом, гипохлоритом, гидроксильным радикалом), координируют генерацию воспалительных медиаторов нейтрофилами и макрофагами (простагландинов, IL-6, TNF-α и др.). Эффекты некоторых антиоксидантов представлены в табл. 3-5.

    Таблица 3-5. Наиболее известные антиоксиданты

    Антиоксидант

    Характеристика

    Церулоплазмин

    Окисляет Fe 2 + до Fe 3 + молекулярным кислородом

    Апо-белок трансферрина

    Связывает Fe 3 +

    Ферритин

    Окисляет Fe 2 + и депонирует Fe 3 +

    Карнозин

    Связывает Fe 2 +

    Супероксиддисмутазы

    Удаляют супероксид с образованием пероксида водорода

    Каталаза

    Разлагает пероксид водорода с выделением кислорода

    Глутатионпероксидазы

    1. Удаляют пероксид водорода за счет окисления глутатиона

    2. Удаляют гидроперекиси липидов

    Глутатионредуктаза

    Восстанавливает окисленный глутатион

    Токоферол, тироксин, стероиды

    Перехватывают радикалы липидов

    Аскорбиновая кислота

    Регенерирует окисляющиеся токоферол и убихинон

    Глутатион

    Используется для восстановления пероксидов

    Основные стадии цепного окисления. Реакция цепного окисления липидов играет исключительную роль в клеточной патологии. Она протекает в несколько стадий: инициирование, продолжение, разветвление и обрыв цепи (рис. 3-4).

    Рис. 3-4. Цепная реакция перекисного окисления липидов: 1-старая цепь окисления, 2, 3 - новые цепи окисления

    Инициирование цепной реакции начинается с того, что в липидный слой мембран или липопротеинов внедряется свободный радикал. Чаще всего это радикал гидроксила. Будучи небольшой по размеру незаряженной частицей, он способен проникать в толщу гидрофобного липидного слоя и вступать в химическое взаимодействие с полиненасыщенными жирными кислотами (их принято обозначать как LH), входящими в состав биологических мембран и липопротеинов плазмы крови. При этом образуются липидные радикалы:

    HO" + LH - Н 2 О + L".

    Липидный радикал (L) вступает в реакцию с растворенным в среде молекулярным кислородом, при этом образуется новый свободный радикал - радикал липоперекиси (LOO):

    Этот радикал атакует одну из соседних молекул фосфолипида с образованием гидроперекиси липида LOOH и нового радикала L:

    LOO"+ LH - LOOН + L"

    Чередование двух последних реакций как раз и представляет собой цепную реакцию ПОЛ (см. рис. 3-4).

    Существенное ускорение пероксидации липидов наблюдается в присутствии небольших количеств ионов двухвалентного железа. В этом случае происходит разветвление цепей в результате взаимодействия Fe 2 + с гидроперекисями липидов:

    Fe 2 + + LOOН - Fe 3 + + НО - + LO"

    Образующиеся радикалы LO" инициируют новые цепи окисления липидов (см. рис. 3-4):

    LO" + LH - LOН + L"; L"+ О 2 - LOO" - и т.д.

    В биологических мембранах цепи могут состоять из десятка звеньев и более. Но, в конце концов, цепь обрывается в результате взаимодействия свободных радикалов с антиоксидантами (InH), ионами металлов переменной валентности (например, теми же Fe 2 +) или друг с другом:

    LOO" + Fe 2 + + H+ - LOOН + Fe 3 +

    LOO" + InH - In"+ LOOH

    LOO + LOO - молекулярные продукты

    Повреждающее действие пероксидации липидов. На рис. 3-5 показаны основные мишени ПОЛ в мембранных структурах клеток. Повреждаются либо белковые структуры, либо липидный бислой в целом. В последнее время ученые уделяют все большее внимание взаимодействию мембран с нуклеиновыми кислотами в ядре и митохондриях. По-видимому, одним из результатов пероксидации липидов может стать повреждение этих молекул со всеми вытекающими последствиями.

    Наиболее чувствительны к перекисному окислению липидов сульфгидрильные, или тиоловые, группы (SH) мембранных белков: ферментов, ионных каналов и насосов. В ходе окисления тиоловых групп образуются радикалы (S), которые затем либо взаимодействуют друг с другом с образованием дисульфидов (SS), либо связываются с кислородом с образованием сульфитов и сульфатов (SO 3 и SO 4). Большую роль в патологии клетки играет также

    Рис. 3-5. Повреждающее действие перекисного окисления липидов на биологические мембраны

    повреждение ионтранспортирующих ферментов (например, Ca 2 +, Мg 2+ -АТФазы), в активный центр которых входят тиоловые группы (рис. 3-5, 1). Инактивация Са 2 +-АТФазы приводит к замедлению откачивания из клетки ионов кальция и ускорению их «протечки» в клетку (где их концентрация меньше). Это вызывает рост уровня ионов кальция в цитоплазме и повреждение клеточных структур.

    Окисление тиоловых групп мембранных белков приводит к появлению дефектов в мембранах клеток и митохондрий. Под действием электрического поля через такие дефекты в клетки входят ионы натрия, а в митохондрии - ионы калия. В результате происходит увеличение осмотического давления внутри клеток и митохондрий и их набухание. Это приводит к еще большему повреждению мембранных структур.

    Наряду с белками и нуклеиновыми кислотами мишенью повреждающего действия ПОЛ служит сам липидный бислой. Было показано, что продукты ПОЛ делают липидную фазу мембран проницаемой для ионов водорода и кальция (рис. 3-5, 2-3). Это приводит к тому, что в митохондриях окисление и фосфорилирование разобщаются, и клетка оказывается в условиях энергетического голода. Одновременно из митохондрий в цитоплазму выходят ионы кальция, которые повреждают клеточные структуры.

    Возможно, наиболее важный результат пероксидации - это уменьшение электрической стабильности липидного слоя, кото-

    рое приводит к электрическому пробою мембраны собственным мембранным потенциалом (рис. 3-5, 4). Электрический пробой вызывает полную потерю мембраной ее барьерных функций.

    Стабильность липидного слоя мембран и явление электрического пробоя. Как известно, мембраны обладают определенным сопротивлением R электрическому току I, которое при небольшой разности потенциалов φ между двумя сторонами мембраны является постоянной величиной. Иными словами, для мембраны соблюдается закон Ома: I = φ / R. Это означает, что зависимость между напряжением на мембране φ и током через мембрану I - линейная. Однако такая зависимость сохраняется при сравнительно небольших величинах |φ|: не выше 200-300 мВ. При определенной критической разности потенциалов ток резко увеличивается, что может стать причиной разрушения мембраны. Это явление называется электрическим пробоем.

    В основе электрического пробоя мембраны лежит спонтанное (вследствие теплового движения молекул) зарождение в липидном бислое дефектов - пор, через которые могут проходить водорастворимые молекулы и ионы. При отсутствии разности потенциалов на мембране увеличения размеров спонтанно образовавшихся пор не происходит, так как данный процесс сопровождается ростом площади раздела фаз «липид - вода» и требует энергетических затрат на преодоление сил поверхностного натяжения на границе раздела фаз. Однако при увеличении разности потенциалов на мембране количество энергии, необходимое для образования и увеличения размеров поры, уменьшается, что способствует ее дальнейшему росту, который после преодоления некоторого энергетического барьера становится самопроизвольным и приводит к полному разрушению мембраны (рис. 3-6). При небольших мембранных потенциалах, существующих в живой клетке (-70 мВ на цитоплазматической мембране и -175 мВ на внутренней мембране митохондрий), этого не происходит, потому что энергетический барьер достаточно высок. Более того, в нормальных условиях, под действием сил поверхностного натяжения образовавшийся дефект «затягивается», и мембрана остается целой. Величина барьера снижается при увеличении поляризации мембраны. Потенциал, при котором начинается электрический пробой, называется потенциалом пробоя и обычно обозначается как U* или φ*. Величина потенциала пробоя различна для мембран с разным составом белков и липидов и может служить количественной мерой электрической

    Рис. 3-6. Электрический пробой мембран: А - появление в липидном бислое мембраны поры, заполненной водой; Б - размер внутренней поверхности поры пропорционален ее радиусу; В - энергия мембраны с порой в зависимости от ее радиуса (величина потенциального барьера при росте поры уменьшается); Г - возрастание тока в зависимости от потенциала пробоя

    стабильности мембраны. Чем стабильнее мембрана, тем выше ее потенциал пробоя (т.е. |φ*|).

    В живых клетках потенциал пробоя выше мембранного потенциала (|φ*|>|φ|), иначе мембраны пробивались бы своим собственным потенциалом и клетка не могла существовать. Однако запас электрической прочности невелик - 20-30 мВ. Это означает, что при |φ*|<|φ|, т.е. при снижении электрической прочности, может произойти «самопробой» мембраны.

    Как уже указывалось выше, основными причинами нарушения барьерных свойств мембран при патологии являются их механическое (осмотическое) растяжение, активация ПОЛ, гидролиз фосфолипидов и адсорбция полиэлектролитов на поверхности. Изучение влияния этих факторов на электрическую прочность мембран показало, что все они снижают силы поверхностного натяжения на границе раздела фаз «липидный слой мембраны - окружающий водный раствор», а следовательно, величину потенциала пробоя (рис. 3-7). Таким образом, электрический пробой - это универсальный механизм нарушения барьерной функции мембран при патологии.

    Мембранные системы защиты от электрического пробоя. Известны два фактора, с помощью которых живые клетки повышают электрическую стабильность своих мембранных структур:

    Рис. 3-7. Снижение электрической прочности бислойной липидной мембраны (БЛМ) при действии ультрафиолетового излучения (УФ), фосфолипазы А2, пептидов, при растяжении мембраны, вызванном разностью гидростатического давления (ΔΡ)

    1. Асимметричный поверхностный потенциал. Поверхностный потенциал возникает на мембране в случае появления на поверхности липидного слоя заряженных химических группировок, например таких, как карбоксил или фосфат. Непосредственно на липидный бислой действует потенциал, равный разности величины мембранного потенциала (т.е. потенциала между водными средами, омывающими мембрану) и поверхностного потенциала (рис. 3-8). За счет неодинаковой плотности зарядов на поверхности мембраны реальная разность потенциалов, приложенная к липидному бислою, отличается от трансмембранной разности потенциалов. Это снижает вероятность пробоя мембраны собственным потенциалом.

    2. Холестерин. Было показано, что включение молекул холестерина в фосфолипидный бислой весьма заметно увеличивает электрическую прочность мембран, т.е. повышает потенциал пробоя (см. рис. 3-6, Г). Особенно заметно действие холестерина на поврежденные мембраны. Защитные свойства холестерина против электрического пробоя мембраны можно объяснить его влиянием на вязкость липидного бислоя. Известно, что введение холестерина в фосфолипидный бислой повышает вязкость последнего в 2-3 раза. Это приводит к замедлению образования и роста дефектов (пор) в липидном бислое мембран, лежащих в основе явления электрического пробоя.

    Рис. 3-8. Влияние поверхностного потенциала (cp S) на разность потенциалов на липидном слое мембран (cp L) при одном и том же мембранном потенциале (φ)

    Критерии оценки нарушений барьерной функции цитоплазматической мембраны. Основными критериями, позволяющими судить о нарушении барьерных свойств цитоплазматической мембраны и увеличении ее проницаемости, являются: уменьшение электрического сопротивления ткани, проникновение водорастворимого красителя в цитоплазму, снижение мембранного потенциала покоя, нарушение ионного баланса, выход внутриклеточных метаболитов в окружающую среду, набухание клеток.

    Уменьшение электрического сопротивления (импеданса) ткани. Методом оценки состояния как плазматической, так и внутриклеточных мембран может служить измерение электрического сопротивления - импеданса ткани, который включает в себя омическую и емкостную составляющие, поскольку каждая клетка представляет собой как бы систему конденсаторов (биологические мембраны) и резисторов (биологические мембраны, межклеточная жидкость и цитоплазма). При повреждении или старении клеток регистрируется уменьшение емкостного сопротивления тканей, связанное в основном с нарушением состояния мембран клеток. При набухании, или стрикции, клеток изменяется омическая (высокочастотная) составляющая импеданса. Для количественной оценки указанных нарушений Б.Н. Тарусовым предложено определение коэффициента жизнеспособности клеток (К) как отношения сопротивления ткани переменному току с частотой 104 Гц (R104) к сопротивлению ткани при действии тока с частотой 106 Гц (R106): К= R104 /R106.

    Окраска цитоплазмы различными красителями. Водорастворимые красители плохо проникают через мембраны неповрежденных клеток, слабо связываются внутриклеточными структурами и потому слабо их прокрашивают. Увеличение проницаемости плазматической и внутриклеточных мембран приводит к возрастанию количества красителя, вошедшего в клетку и связавшегося с компонентами цитоплазмы. Следовательно, окрашивание клетки красителями усиливается при ее повреждении. На этом основаны многие гистохимические методы определения жизнеспособности клеток (с помощью нейтрального синего, эозина и др.).

    Снижение мембранного потенциала покоя. Разность электрических потенциалов между содержимым клетки и окружающей средой (мембранный потенциал покоя) создается, как известно, в основном диффузией ионов калия из клетки в окружающую среду. Неравномерное распределение ионов между клеткой и окружающей

    средой, лежащее в основе генерации электрических потенциалов на мембране, обеспечивается постоянной работой молекулярного ионного насоса (Na + /К + -АТФаза), встроенного в плазматическую мембрану клеток.

    Так, внутри клеток содержание ионов калия в 20-40 раз выше, а ионов натрия - в 10-20 раз ниже, чем во внеклеточной жидкости. Благодаря различию в концентрации ионов в клетке и окружающей среде на плазматической мембране имеется разность потенциалов со знаком «минус» внутри клетки (около -70 мВ для нервных и мышечных клеток). Уменьшение поляризации мембраны при действии повреждающих факторов происходит как в результате неспецифического увеличения ионной проницаемости, так и при уменьшении градиентов концентрации ионов вследствие выключения ионных насосов.

    Последнее происходит как при прямом повреждении Na+/K+- АТФазы, так и при снижении уровня АТФ вследствие нарушения биоэнергетических процессов в митохондриях. Например, установлено снижение мембранного потенциала покоя клеток печени у лабораторных животных при асфиксии. Снижение мембранного потенциала наблюдается также при холодовом, радиационном, аллергическом, токсическом и других повреждениях клеток и субклеточных структур.

    Выход ионов калия из клеток. Благодаря разности потенциалов между внутренним содержимым клетки и окружающей жидкостью ионы калия входят в клетку. Этот постоянный поток К+ внутрь клетки компенсирует спонтанный выход калия наружу, который происходит в силу диффузии этих катионов из области с более высокой концентрацией калия в область с более низкой его концентрацией. Повреждение клетки сопровождается снижением содержания в ней АТФ, угнетением Na + /К + -АТФазы, падением электрического потенциала на плазматической мембране, повышением содержания внутриклеточного Ca 2 + и выходом калия из клеток. Освобождение калия из клеток описано при механической травме, различных интоксикациях, аллергических состояниях, гипоксии, гипотермии и многих других повреждениях органов и тканей. Понижение содержания К+ в клетке может происходить также под влиянием больших доз минералокортикоидных гормонов, при действии некоторых лекарственных веществ, например сердечных гликозидов. В свою очередь, увеличение концентрации калия во внеклеточной среде приводит к снижению мембранного потенциа-

    ла соседних неповрежденных клеток, что в случае электровозбудимых тканей может вызвать генерацию потенциалов действия. Так, увеличение концентрации калия в очаге инфаркта миокарда может стать одной из причин возникновения фибрилляции сердца.

    Накопление ионов кальция в цитоплазме. В нормальных клетках концентрация ионов кальция в цитоплазме исключительно низка: 10 -7 М или даже 10 -8 М, тогда как в окружающей клетку среде содержится 10 -3 М ионов кальция. При этом следует иметь в виду, что ионы кальция проходят в клетку не только самопроизвольно (процесс «утечки» через мембрану), но и в некоторых клетках через кальциевые каналы в мембране. Эти каналы могут открываться в ответ на деполяризацию мембраны (потенциалзависимые кальциевые каналы) или присоединение гормонов и медиаторов к мембранным рецепторам (рецепторуправляемые кальциевые каналы). Компенсирует вход Са 2 + в клетку работа трех типов кальцийтранспортирующих систем: кальциевого насоса (Са 2+ /Мg 2+ -АТФаза) в мембране саркоплазматического ретикулума и плазмолемме, аккумуляции Са 2 + в митохондриях и в некоторых клетках Na+/Ca 2 +- обменника, встроенного в плазмолемму.

    При повреждении клетки нарушается работа митохондрий: снижается мембранный потенциал внутренней митохондриальной мембраны, прекращается окислительное фосфорилирование. Как следствие снижения мембранного потенциала уменьшается поглощение митохондриями ионов кальция. Снижение концентрации АТФ в клетке приводит к угнетению Са 2+ /Мg 2+ -АТФазы плазматической мембраны и мембраны саркоплазматического ретикулума. Увеличение концентрации Na+ в клетке вследствие угнетения натриевого насоса при недостатке АТФ приводит к выключению и даже обращению направления Na + /Са 2+ -обмена через плазматическую мембрану. В результате этого происходит увеличение концентрации кальция от 10 -8 М - 10 -7 M до 10 -6 М - 10 -5 М, что приводит к активации большого числа кальцийзависимых ферментов (протеинкиназ, фосфатаз, фосфолипаз, фосфодиэстеразы циклических нуклеотидов и др.), нарушениям цитоскелета (см. раздел 3.4), образованию нерастворимых включений кальция в матриксе митохондрий, повреждению внутриклеточных мембран и общей дезорганизации метаболизма. Морфологически это проявляется в замедлении броуновского движения различных включений внутри клетки (увеличение «вязкости протоплазмы») и возрастании светорассеяния; красители начинают легче проникать в

    клетку и связываются в большом количестве с внутриклеточными структурами. Все эти признаки типичны для «неспецифической реакции клетки на повреждение» по Д.Н. Насонову и В.Я. Александрову (см. выше).

    Выход метаболитов. Увеличение проницаемости мембраны клеток и ухудшение работы ионных насосов приводят к тому, что компоненты цитоплазмы выходят в окружающую среду. Вышедшие из клеток вещества отнюдь не безразличны для других клеток, тканей и органов. Так, среди веществ, выходящих из клеток, поврежденных в результате ишемии (нарушения кровотока) или ожога, имеются полипептиды, обладающие способностью вызвать остановку сердца (ишемический, ожоговый токсины). Обнаружение этих веществ осуществляется различными методами, включая измерение хемилюминесценции плазмы крови, интенсивность которой снижается в присутствии полипептидных токсинов.

    Увеличение объема (набухание) клеток. Увеличение объема клеток - один из наиболее ранних признаков ее повреждения, который проявляется, например, при недостатке кислорода в ткани - тканевой гипоксии. Сохранение нормальной формы и объема клеток связано с состоянием цитоскелета и поддержанием определенного соотношения между осмотическим давлением белков и электролитов внутри и вне клетки. При этом форма клетки определяется в большей мере цитоскелетом, тогда как объем - поддержанием осмотического баланса. Поскольку все биологические мембраны хорошо проницаемы для воды, но плохо проницаемы для большинства растворенных в воде веществ, включая соли, клетки, так же как и внутриклеточные структуры, например митохондрии, обладают свойством осмометра: их объем изменяется при изменении концентрации ионов и молекул внутри и вне клетки или органеллы. В нормальных условиях соотношение концентраций всех ионов и молекул внутри и вне клетки строго поддерживается. Как только в цитоплазме начинает увеличиваться концентрация ионов или молекул, объем клетки возрастает, поскольку вода поступает внутрь. Выкачивание ионов мембранными насосами и обменниками сопровождается восстановлением ее объема за счет выхода вслед за ионами избытка воды.

    Отек клетки связан с нарушением регуляции ее объема со стороны плазматической мембраны. В нормальных клетках концентрация белка выше, чем вне клеток, вследствие чего клетки млекопитающих обладают более высоким внутриклеточным

    коллоидно-осмотическим (онкотическим) давлением, чем внеклеточная жидкость. Это неизбежно привело бы к увеличению объема клетки, если бы для уравновешивания этого «избыточного» давления не происходило удаление (выкачивание) ионов натрия из клетки за счет работы энергозависимой Na + /К + -АТФазы. Поскольку мембрана клеток хорошо проницаема для ионов хлора, то вместе с натрием выходит и хлор за счет разности потенциалов на мембране. Иначе говоря, натриевый насос удаляет из клетки NaCl и снижает концентрацию ионов в цитоплазме, что приводит к уменьшению клеточного объема. Этому процессу противостоит процесс самопроизвольного поступления натрия внутрь клетки через дефекты в липидном бислое, натриевые каналы, переносчики, сопрягающие вход натрия с транспортом сахаров и аминокислот в клетку, Na+/H+- и Na + /Ca 2+ -обменники, а также Na + /К + /2С1- котранспортер.

    Таким образом, живая клетка находится в состоянии динамического равновесия, при котором «протечка» клеточной мембраны компенсируется постоянной работой ионной помпы (это так называемая гипотеза leak and pump).

    При патологии может происходить либо увеличение ионной проницаемости клеточной мембраны (возрастание «протечки»), либо нарушение работы ионных насосов, например, при недостатке энергообеспечения вследствие гипоксии, действия цианидов или разобщителей окислительного фосфорилирования (динитрофенол). В опытах с изолированными клетками печени, почек и мозга было показано, что отравление солями ртути или других тяжелых металлов приводит к увеличению ионной проницаемости мембраны клеток (увеличению «протечки»), нарушению АТФ-зависимого транспорта и возрастанию объема клеток (т.е. набуханию ткани).

    Второй механизм набухания клеток при гипоксии - увеличение внутриклеточной осмотической нагрузки, вызванное накоплением метаболитов (катаболитов), таких как неорганический фосфат, лактат и пуриновые нуклеозиды.

    Ядро (лат. nucleus, греч. karion-ядро) – это обязательный компонент эукариотических клеток. Оно хорошо различимо в неделящихся клетках и выполняет ряд важнейших функций:

    1) хранение и передача наследственной информации в клетке;

    2) создание аппарата белкового синтеза – синтез всех видов РНК и образование рибосом.

    Выпадение или нарушение любой из этих функций приводит клетку к гибели.

    Рис.24 . Схема ультрамикроскопического строения ядра.

    Клетка содержит, как правило, одно ядро, но имеются двуядерные и многоядерные клетки.

    Интерфазные ядра состоят из: ядерной оболочки, ядерного сока (кариоплазма, кариолимфа или нуклеоплазма), ядерного белкового остова, хроматина и ядрышек.

    Ядерная оболочка (кариолемма) состоит из двух мембран, между которыми имеется перинуклеарное пространство шириной 10-40нм, заполненное электронно – микроскопически рыхлой субстанцией. Наружная мембрана ядерной оболочки со стороны цитоплазмы в ряде участков переходит в мембраны эндоплазматической сети, и на ее поверхности располагаются полирибосомы. Внутренняя мембрана ядерной оболочки участвует в обеспечении внутреннего порядка в ядре – в фиксации хромосом в трехмерном пространстве. Эта связь опосредуется с помощью слоя фибриллярных белков, сходных с промежуточными филаментами цитоплазмы.

    В ядерной оболочке имеются поры диаметром около 90 нм. В этих участках по краям отверстия мембраны ядерной оболочки сливаются. Сами отверстия заполняются сложноорганизованными глобулярными и фибриллярными структурами. Совокупность мембранных перфораций и заполняющих их структур называется поровым комплексом .

    По краю порового отверстия располагаются в три ряда гранулы (по 8 гранул в каждом ряду). При этом один ряд лежит со стороны цитоплазмы, другой – со стороны внутреннего содержимого ядра, а третий – между ними. От гранул этих слоев радиально отходят фибриллярные отростки, образуя в поре как бы перепонку – диафрагму. Фибриллярные отростки направляются к центрально расположенной грануле.



    Рис.25 . Строение ядерных пор (поровый комплекс).

    Поровые комплексы участвуют в рецепции транспортируемых через поры макромолекул (белков и нуклеопротеидов), а также в активном переносе через ядерную оболочку этих веществ с использованием АТФ.

    Число ядерных пор зависит от метаболической активности клеток. Чем интенсивнее протекают в клетке процессы синтеза, тем больше пор. В среднем на одно ядро приходится несколько тысяч поровых комплексов.

    Основные функции ядерной оболочки следующие:

    Барьерная (отделение содержимого ядра от цитоплазмы и ограничение свободного доступа в ядро крупных биополимеров);

    Регуляция транспорта макромолекул между ядром и цитоплазмой;

    Участие в создании внутриядерного порядка (фиксация хромосомного аппарата).

    Кариоплазма (ядерный сок, или нуклеоплазма, или кариолимфа) – это содержимое ядра, которое имеет вид гелеобразного матрикса. Она содержит различные химические вещества: белки (в том числе и ферменты), аминокислоты и нуклеотиды в виде истинного или коллоидного раствора.

    Ядерный или белковый остов (матрикс). В интерфазных ядрах негистоновые белки образуют сеть – «белковый матрикс». Он состоит из периферического фибриллярного слоя, выстилающего ядерную оболочку (ламина), и внутренней сети, к которой прикрепляются фибриллы хроматина. Матрикс участвует в поддержании формы ядра, организации пространственного положения хромосом. Кроме того, в нем содержатся ферменты, необходимые для синтеза РНК и ДНК, а также белки, участвующие в компактизации ДНК в интерфазных и митотических хромосомах.

    Хроматин – комплекс ДНК и белков (гистоновых и негистоновых). Хроматин является интерфазной формой существования хромосом.

    1.Эухроматин; 2. Гетерохроматин

    Рис.26 . Хроматин интерфазных хромосом.

    В этот период разные участки хромосом имеют неодинаковую степень компактизации. Наибольшей степенью компактизации обладают генетически инертные участки хромосом. Они хорошо окрашиваются ядерными красителями и называются гетерохроматином. Различают конститутивный и факультативный гетерохроматин.

    Конститутивный гетерохроматин образован нетранскрибируемой ДНК. Полагают, что он участвует в поддержании структуры ядра, прикреплении хромосом к ядерной оболочке, узнавании при мейозе гомологичных хромосом, разделении соседних структурных генов и в процессах регуляции их активности.

    Факультативный гетерохроматин, в отличие от конститутивного, может становиться транскрибируемым на определенных стадиях клеточной дифференцировки или онтогенеза. Примером факультативного гетерохроматина может служить тельце Барра, образующееся у организмов гомогаметного пола за счет инактивации одной из Х-хромосом.

    Декомпактизированные участки хромосом, которые плохо окрашиваются ядерными красителями, называются эухроматином .Это функционально активный, транскрибируемый хроматин.

    Ядрышки – уплотненные тельца, обычно округлой формы, диметром менее 1 мкм. Присутствуют они только в интерфазных ядрах. Количество их колеблется в диплоидных клетках от 1 до 7, но в некоторых видах клеток, например, микронуклеусах инфузории, ядрышки отсутствуют.

    Министерство образования Республики Беларусь

    Учреждение образования

    «Международный государственный экологический университет имени А.Д. Сахарова»

    Факультет экологической медицины

    Кафедра биохимии и биофизики

    Молекулярная организация клеточного ядра

    Выполнила:

    студентка 4-го курса

    Специальности МБД

    92062-2 группы

    Шилова Анастасия

    Минск 2012
    Содержание:

    Введение…………………………………………………………3

    1. Ядерная оболочка (кариолемма)…………………………….4
    2. Строение ядерной оболочки…………………………...4
    3. Структурная организация ядерных пор……………….5
    4. Свойства ядерных пор………………………………….8
    5. Нуклеопорины…………………………………………..8
    6. Сборка и распад ядерной оболочки…………………...8
    7. Химия ядерной оболочки……………………………...10
    8. Ядерно - цитоплазматический транспорт…………………..11
    9. Регуляция транспорта молекул через ядерную пору..12
    10. Ядерный матрикс…………………………………………….17
    11. Хроматин……………………………………………………..18
    12. ДНК хроматина………………………………………...20
    13. Белки хроматина……………………………………….21
    14. Хромосомы……………………………………………..23
    15. Ядрышко……………………………………………………...24
    16. Количество ядрышек в клетке………………………...24
    17. Физиология и химия ядрышка………………………...25
    18. РНК ядрышек…………………………………………...26
    19. ДНК ядрышек…………………………………………..26
    20. Ультраструктура ядрышек…………………………….27
    21. Судьба ядрышек при делении клеток………………...28
    22. Кариоплазма………………………………………………….28
    23. Роль ядра……………………………………………………...30

    Заключение……………………………………………………...32

    Список литературы………………………………………………..33

    Введение:

    Говоря о клеточном ядре, мы имеем в виду собственно ядра эукариотических клеток. Их ядра построены сложным образом и довольно резко отличаются от “ядерных” образований, нуклеоидов прокариотических организмов. У последних в состав нуклеоидов (ядроподобных структур) входит одиночная кольцевая молекула ДНК, практически лишенная белков. Иногда такую молекулу ДНК бактериальных клеток называют бактериальной хромосомой, или генофором (носителем генов). Бактериальная хромосома не отделена мембранами от основной цитоплазмы, однако собрана в компактную ядерную зону - нуклеоид, который можно видеть в световом микроскопе после специальных окрасок (рис.1) .

    Рисунок 1. Строение ядра эукариотических и прокариотическтих клеток.

    Сам термин “ядро” впервые был применен Броуном в 1833 г. д ля обозначения шаровидных постоянных структур в клетках растений. Позднее такую же структуру описали во всех клетках высших организмов.

    Ядра имеют обычно шаровидную или яйцевидную форму; диаметр первых равен приблизительно 10 мкм, а длина вторых - 20 мкм. Ядро необходимо для жизни клетки, поскольку именно оно регулирует всю ее активность. Связано это с тем, что ядро несет в себе генетическую (наследственную) информацию, заключенную в ДНК.

    1. Ядерная оболочка (кариолемма)

    Кариолемма – ядерная оболочка, которая отделяет содержимое ядра от цитоплазмы (барьерная функция), в то же время обеспечивает регулируемый обмен веществ между ядром и цитоплазмой. Ядерная оболочка принимает участие в фиксации хроматина. Кариолемма состоит из двух билипидных мембран, внешней и внутренней ядерных мембран, разделенных перинуклеарным пространством шириной 20 – 100 нм. В кариолемме имеются поры диаметром 80 – 90 нм. В области пор внешняя и внутренняя ядерные мембраны переходят друг в друга, а перинуклеарное пространство оказывается замкнутым. Просвет поры закрывается специальным структурным образованием – комплексом поры, который состоит из фибриллярного и гранулярного компонентов. Гранулярный компонент представлен белковыми гранулами диаметром 25 нм, располагающимися по краю поры в 3 ряда. От каждой гранулы отходят фибриллы и соединяются в центральной грануле, располагающейся в центре поры. Комплекс поры играет роль диафрагмы, регулирующей ее проницаемость. Размеры поры стабильные для данного типа клетки, но число пор может меняться при ее дифференцировке. В ядрах сперматозоидов поры отсутствуют. На наружной поверхности ядерной мембраны могут локализоваться прикрепленные рибосомы. Кроме того, наружная ядерная мембрана может продолжаться в каналы ЭПС. В общем виде ядерная оболочка может быть представлена, как полый двухслойный мешок, отделяющий содержимое ядра от цитоплазмы. Из всех внутриклеточных мембранных компонентов таким типом расположения мембран обладают только ядро, митохондрии и пластиды. Однако ядерная оболочка имеет характерную особенность, отличающую ее от других мембранных структур клетки. Это наличие особых пор в оболочке ядра, которые образуются за счет многочисленных зон слияний двух ядерных мембран и представляет собой как бы округлые перфорации всей ядерной оболочки.

    1. Строение ядерной оболочки

    Внешняя мембрана ядерной оболочки, непосредственно контактирующая с цитоплазмой клетки, имеет ряд сруктурных особенностей, позволяющих отнести ее к собственно мембранной системе эндоплазматического ретикулума. Так, на внешней ядерной мембране обычно располагается большое количество рибосом. У большинства животных и растительных клеток внешняя мембрана ядерной оболочки не представляет собой идеально ровную поверхность - она можетобразовывать различной величины выпячивания или выросты в сторону цитоплазмы.

    Внутренняя мембрана контактирует с хромосомным материалом ядра. Наиболее характерной и бросающейся в глаза структурой в ядерной оболочке является ядерная пора. Поры в оболочке образуются за счет слияния двух ядерных мембран в виде округлых сквозных отверстий или перфораций с диаметром 80-90 нм. Округлое сквозное отверстие в ядерной оболочке заполнено сложноорганизованными глобулярными и фибриллярными структурами. Совокупность мембранных перфораций и этих структур называют комплексом пор ядра. Тем самым подчеркивается, что ядерная пора не просто сквозная дыра в ядерной оболочке, через которую непосредственно вещества ядра и цитоплазмы могут сообщаться.

    Сложный комплекс пор имеет октагональную симметрию. По границе округлого отверстия в ядерной оболочке располагаются три ряда гранул, по 8 штук в каждом: один ряд лежит со стороны ядра, другой - со стороны цитоплазмы, третий расположен в центральной части пор. Размер гранул около 25 нм. От этих гранул отходят фибриллярные отростки. Такие фибриллы, отходящие от периферических гранул, могут сходиться в центре и создавать как бы перегородку, диафрагму, поперек поры. В центре отверстия часто можно видеть так называемую центральную гранулу. Число ядерных пор зависит от метаболической активности клеток: чем выше синтетические процессы в клетках, тем больше пор на единицу поверхности клеточного ядра.

    1. Структурная организация ядерных пор

    Ядерные поры — это не просто перфорации, а сложно устроенные, многофункциональные регулируемые структуры, организованные приблизительно 30 белками — нуклеопоринами. Белковая составляющая ядерной поры обозначается термином «комплекс ядерной поры» (англ. nuclear pore complex , NPC ). Масса комплекса ядерной поры колеблется в пределах от ~44 МДа в клетках дрожжей до ~125 МДа у позвоночных. По данным электронной микроскопии, ядерные поры в поперечном сечении имеют форму «восьмиспицевого тележного колеса», то есть имеют ось симметрии восьмого порядка. Эти данные подтверждает тот факт, что молекулы нуклеопоринов присутствуют в составе ядерной поры в количестве, кратном восьми. Проницаемый для молекул канал располагается в центре структуры. Комплекс ядерной поры заякорен на ядерной оболочке с помощью трансмембранной части, от которой к просвету канала обращены структуры, получившие название спиц (англ., spokes), по аналогии со спицами тележного колеса. Эта коровая часть поры, построенная из восьми доменов, с цитоплазматической и ядерной сторон ограничена соответственно цитоплазматическим и ядерным кольцами (англ., rings; у низших эукариот они отсутствуют). К ядерному кольцу прикреплены белковые, направленные внутрь ядра, тяжи (ядерные филаменты, англ., filaments), к концам которых крепится терминальное кольцо (англ., terminal ring). Вся эта структура носит название ядерной корзины (англ., nuclear basket). К цитоплазматическому кольцу также прикреплены направленные в цитоплазму тяжи — цитоплазматические филаменты. В центре ядерной поры видна электрон-плотная частица, «втулка» или транспортер (англ., plug) (рис.2) .

    Рис.2 Структура ядерной поры.

    Многие индивидуальные компоненты ЯПК имеют субъединичное строение, что обеспечивает ее высокую пластичность в процессе молекулярного транспорта. Два периферических кольца диаметром около 120 нм - цитоплазматическое и внутриядерное ограничивают центральную часть ядерной поры, состоящую из двух зеркально симметричных отделов. Каждый из этих отделов включает 3 связанных друг с другом кольца: внутреннее, контактирующее с центральным транспортером; среднее, пронизывающее боковой участок ядерной мембраны, формирующей пору, и радиальное, расположенное в просвете между наружной и внутренней ядерными мембранами. Среднее и радиальное кольца обеспечивают прочное закрепление поры в ядерной оболочке, а внутреннее играет роль основного каркаса, вокруг и внутри которого собраны остальные компоненты поры. Центральный канал поры имеет вариабельный внутренний диаметр (меняющийся от 10 до 26 нм) и находится внутри транспортера, состоящего из 4 связанных между собой частей: 2-х симметричных тонкостенных цилиндров и 2-х одинаковых периферических гранул, которые привязаны 8-ю фибриллами к периферическим кольцам поры и закрывают оба входа в центральный канал. Транспортер занимает центральную часть внутреннего кольца поры.

    Периферические отделы ЯПК являются несимметричными, что, вероятно, связано с различными механизмами ядерно-цитоплазматического транспорта молекул через пору на начальных этапах их импорта и экспорта. Со стороны цитоплазмы пора имеет 8 гранул, расположенных на цитоплазматическом кольце, как бусы на нитке, и содержащих короткие фибриллы, а со стороны ядра - 8 фибрилл, отходящих от внутриядерного кольца и формирующих структуру, похожую на баскетбольную корзину (названную баскет). В неактивной поре фибриллы баскета закрывают вход в пору, а в активной - формируют дополнительное кольцо диаметром около 50 нм.

    Структурная организация ЯПК у всех высших организмов, включая человека, птиц, амфибий, насекомых и высших растений сходна и является высоко консервативной. Плотность расположения пор в ядерной оболочке (ЯО) варьирует в среднем от 13 до 30 пор на 1 мкм 2 поверхности ядра, достигая 5000 пор на одно ядро в ооцитах лягушки и ранних эмбрионах дрозофилы. Предполагается, что все ядерные поры являются универсальными и могут обеспечивать транспорт молекул как в ядро, так и в цитоплазму. Изменение числа поровых комплексов в ЯО высших эукариот может происходить при изменении функционального состояния клеток, вероятно, за счет их образования de novo . В то же время из-за тесной связи с ламиной, фибриллярной сетчатой структурой, расположенной с внутренней стороны ядерной оболочки.В отличие от высших организмов, низшие эукариоты (например, дрожжи) не имеют ламины, благодаря чему их ядерные поры могут свободно перемещаться вдоль ядерной оболочки, а их плотность в различных участках оболочки может существенно изменяться. Структура ядерных пор дрожжей до сих пор детально не изучена, хотя показано, что их диаметр (~100 нм) меньше, чем у пор высших организмов (~120 нм), а часть нуклеопоринов в них отсутствует. Вместо 50 нуклеопоринов пора дрожжей содержит только 30. Это согласуется с моделью ЯПК дрожжей, демонстрирующей ее более простое строение по сравнению с клетками высших эукариот. Так, например, в ЯПК дрожжей отсутствует радиальное кольцо в центральном компоненте поры. Однако периферические отделы в порах дрожжей также несимметричны, а центральный канал имеет те же размеры, что и аналогичный канал у высших эукариот. Наблюдаемая универсальность организации ЯПК предполагает, что именно такое строение необходимо для обеспечения возможности двунаправленного транспорта молекул через ЯПК.

    1. Свойства ядерных пор

    Количество ядерных пор на одно ядро может колебаться от 190 у дрожжей, 3000-5000 в клетках человека до 50 млн в зрелых ооцитах шпорцевой лягушки (Xenopus laevis ). Этот показатель может также варьировать в зависимости от типа клетки, гормонального статуса и стадии клеточного цикла. Например, в клетках позвоночных количество ядерных пор удваивается на протяжении S фазы, одновременно с удвоением хромосом. При разборке ядерной оболочки во время митоза ядерные поры позвоночных распадаются на субкомплексы с массами около миллиона дальтон. Показано, что разборка комплекса ядерной поры инициируется циклин B-зависимой киназой, фосфорилирующей нуклеопорины. После завершения клеточного деления ядерные поры собираются de novo . Ядерные поры интерфазного ядра перемещаются большими массивами, а не независимо друг от друга, причем эти перемещения происходят синхронно с перемещениями ядерной ламины . Это служит доказательством того, что ядерные поры механически связаны между собой и формируют единую систему (англ., NPC network).

    1. Нуклеопорины

    Нуклепорины, белки, из которых построены ядерные поры, делят на три подгруппы. К первой относят трансмембранные белки, заякоривающие комплекс в ядерной оболочке. Нуклепорины второй группы содержат характерный аминокислотный мотив — несколько раз повторенные FG, FXFG или GLFG — последовательности (так называемые FG-повторы, где F — фенилаланин, G — глицин, L — лейцин, X — любая аминокислота). Функция FG-повторов, по-видимому, заключается в связывании транспортных факторов, необходимых для осуществления ядерно-цитоплазматического транспорта. Белки третьей подгруппы не имеют ни мембранных доменов, ни FG- повторов, наиболее консервативны среди всех нуклеопоринов, их роль, по-видимому, заключается в обеспечении связывания FG-содержащих нуклепоринов с трансмембранными. Нуклеопорины также отличаются по своей мобильности в составе ядерной поры. Некоторые белки связаны с конкретной порой на протяжении всего клеточного цикла, в то время как другие полностью обновляются всего за несколько минут.

    1. Сборка и распад ядерной оболочки

    До настоящего времени вопрос о формировании и распаде ядерной оболочки (ЯО) и ЯПК в процессе митоза in vivo остается недостаточно изученным. Однако недавние эксперименты по инкубации цитоплазматического экстракта из ооцитов амфибий с хроматином спермы in vitro позволили при использовании высокоразрешающей сканирующей электронной микроскопии получить новые данные о регуляции этого процесса. Было показано, что за 1,5-2,5 часа инкубации в такой системе формируются функционально активные (способные к репликации и транскрипции) ядра со зрелыми ЯПК. На первом этапе гладкие и шероховатые пузырьки эндоплазматического ретикулума связываются с поверхностью деконденсирующегося хроматина и сплавляются вместе, формируя внутреннюю и наружную ядерные мембраны. Для осуществления этого процесса необходимы ионы Са 2 + и большое количество энергии, поставляемой ГТФ и АТФ. При этом было показано, что в формировании ядерной оболочки участвуют два типа пузырьков эндоплазматического ретикулума, различающихся по составу белков. После формирования вокруг хроматина замкнутой ЯО начинается сборка ЯПК. Сначала в различных местах ЯО появляются небольшие ямки, которые затем превращаются в 10-20 нм пустые поры. После этого размер пор увеличивается до 40 нм и далее начинается последовательное формирование сначала внутренних, а затем периферических компонентов поры. Установлено, что сборка составляющих пору компонентов происходит фрагментарно, сначала образуется одна составляющая компонент субъединица, затем вторая и т.д. При этом пора постепенно увеличивается в размере и за 4-6 минут превращается в зрелую пору диаметром 110-120 нм. До сих пор не ясно, какова последовательность сборки белков при формировании ЯПК de novo . Предполагается, что специфические белки, связываясь с мембранами ЯО, стимулируют их постепенное сближение и слияние, после чего к этому участку мембраны присоединяются интегральные белки POM121 и gp210, которые стабилизируют сформированное отверстие. Затем сюда доставляются другие нуклеопорины, необходимые для формирования центральных (комплекс р62) и периферических компонентов (Nup 358, Nup 214, Nup 153 и т.д.) поры, и, наконец, зрелая пора дополнительно закрепляется в ЯО с помощью белков ламины.

    С использованием митотического экстракта в опытах in vitro , было показано, что распад ЯО происходит за счет отщепления от нее пузырьков эндоплазматического ретикулума (ЭР), а разборка ЯПК идет через промежуточные структуры, похожие на интермедиаты, которые наблюдаются при сборке ЯПК. При этом сначала разбираются периферические, а затем центральные компоненты ЯПК. Результаты экспериментов по исследованию сборки и распада ядерных пор in vitro были подтверждены в опытах in vivo при исследовании деления ядер в ранних эмбрионах дрозофилы. Было продемонстрировано, что разборка пор происходит в профазе митоза, сначала разбираются центральные, затем периферические компоненты пор. Сборка новых пор начинается в телофазе после формирования ЯО и проходит через те же промежуточные формы, которые наблюдались при формировании пор в опытах in vitro. Интересно, что наиболее формирование пор в экспериментах in vivo инициируется преимущественно в участках слияния мембран пузырьков эндоплазматического ретикулума с наружной ядерной мембраной.

    Помимо поровых комплексов в ЯО, подобные структуры были обнаружены и в цитоплазме, в составе мембран ЭР. Белковый состав этих пороподобных комплексов сходен с белками ЯПК. Однако, в отличие от ЯПК, их формирование в системе in vitro происходит в отсутствие хроматина. Эти специфические мембраны ЭР были названы дырчатыми или окончатыми мембранами (AL-annulate lamellae). Интересно, что дырчатые мембраны с порами очень похожими на ЯПК, отсутствуют в соматических клетках, но выявляются в больших количествах в быстро делящихся клетках, таких, как яйцеклетки, эмбриональные и опухолевые клетки. Функциональная роль этих структур пока слабо изучена. Предполагается, что эти структуры представляют собой депо белков ядерных пор и могут участвовать в сборке ЯПК в случае быстрых митозов, однако механизмы регуляции этого процесса, а также особенности использования этих структур при формировании ЯО и ЯПК in vivo почти не изучены.

    1. Химия ядерной оболочки

    В составе ядерных оболочек обнаруживаются небольшие количества ДНК (0-8%), РНК (3-9%), но основными химическими компонентами являются липиды (13-35%) и белки (50-75%), что для всех клеточных мембран. Состав липидов сходен с таковым в мембранах микросом или мембранах

    эндоплазматической сети. Ядерные оболочки характеризуются относительно низким содержанием холестерина и высоким - фосфолипидов, обогащенных насыщенными жирными кислотами. Белковый состав мембранных фракций очень сложен. Среди белков обнаружен ряд ферментов, общих с ЭР (например, глюкозо-6-фосфатаза, Mg-зависимая АТФаза, глютамат-дегидрогеназа и др.) не обнаружена РНК-полимераза. Тут выявлены активности многих окислительных ферментов (цитохромоксидазы, НАДН- цитохром-с-редуктазы) и различных цитохромов. Среди белковых фракций ядерных мембран встречаются основные белки типа гистонов, что объясняется связью участков хроматина с ядерной оболочкой.

    1. Ядерно-цитоплазматический транспорт

    Ядерно-цитоплазматическим транспортом называется материальный обмен между Клеточное ядром и цитоплазмой клетки . Ядерно-цитоплазматический транспорт можно разделить на две категории: активный транспорт, требующий затрат энергии, а также специальных белков-рецепторов, и пассивный транспорт, протекающий путем простой диффузии молекул через канал ядерной поры.

    Молекулы небольших размеров (ионы, метаболиты , мононуклеотиды и т. д.) способны пассивно диффундировать в ядро. Проводимость ядерных пор для молекул разных размеров различна. Белки массой менее 15 кДа быстро проникают в ядро, в то время как для белка массой более 30 кДа на это требуется определенное время. Белковые молекулы массой более 60-70 кДа, по-видимому, вообще не могут пассивно проходить через ядерные поры. Впрочем, пропускная способность ядерных пор для пассивной диффузии может изменяться в зависимости от типа клетки и стадии клеточного цикла.

    Путём активного транспорта через ядерные поры могут проходить гораздо более крупные молекулы и целые надмолекулярные комплексы. Так, рибосомные субчастицы размерами до нескольких мегадальтон транспортируются из ядра в цитоплазму через ядерные поры, и нет никаких оснований предполагать, что процесс транспорта сопровождается частичной разборкой этих субчастиц. Системы активного транспорта обеспечивают весь макромолекулярный обмен между ядром и цитоплазмой. Молекулы РНК, синтезируемые в ядре, поступают через поры в цитоплазму, а в ядро попадают белки, участвующие в ядерном метаболизме. Причем одни белки должны поступать в ядро конститутивно (например, гистоны), а другие в ответ на определенные стимулы (например, транскрипционные факторы). У ядерных белков идентифицированы специальные последовательности, отвечающие за их локализацию. Самая распространенная из них, так называемый «классический» сигнал ядерной локализации — NLS (от англ., Nuclear Localization Signal), представляет собой один или два участка положительно заряженных аминокислот, аргинина и лизина . Транслокация белков в ядро, в отличие от транслокации в митохондрии и эндоплазматический ретикулум, не сопровождается отщеплением этой сигнальной последовательности и разворачиванием полипептидной цепи. NLS-содержащие белки, как и все другие субстраты систем ядерного транспорта, переносятся в ядро в комплексе со специальными белками — транспортинами или кариоферинами (англ., transportins, karyopherins). Каждый транспортин или комплекс транспортинов для осуществления своей функции должен обладать тремя активностями: во-первых, он должен узнавать и связывать транспортируемый субстрат, во-вторых, заякориваться на ядерной поре, и в-третьих, связывать небольшой белок — GTPазу Ran, относящуюся к семейству Ras-подобных ГТФаз и служащую для сопряжения транспорта с гидролизом ГТФ, что придает процессу необратимость (снабжает его энергией). Собственно акт гидролиза ГТФ осуществляется непосредственно этим белком. Фактор обмена нуклеотидов (англ., GTPase Еxchange Factor, GEF) для Ran, хроматин-связывающй белок RCC1, локализован строго в ядре, а активаторы ГТФазной активности (англ., GTPase Activation Protein, GAP) RanGAP1 и некоторые другие белки — строго в цитоплазме. Эта асимметричная локализация приводит к формированию градиента: в ядре находится преимущественно ГТФ-связанная форма Ran, в цитоплазме, наоборот, ГДФ-связанная. Ran используется для снабжения энергией как процессов импорта, так и процессов экспорта различных субстратов, а вся схема носит название Ran-цикла (англ., Ran-cycle). Ran-цикл снабжает энергией и экспорт, и импорт, используя общий принципиальный механизм, ключевыми стадиями которого являются гидролиз ГТФ в цитоплазме и обмен ГДФ на ГТФ в ядре.

    1. Регуляция транспорта молекул через ядерную пору

    Поскольку активный транспорт молекул между ядром и цитоплазмой, осуществляемый ЯПК, является жизненно важным для обеспечения различных внутриклеточных процессов, то он контролируется многими факторами. Они включают в себя 3 взаимодействующих между собой системы: 1) комплекс биохимических регуляторов, находящихся в ядре или в цитоплазме и связывающихся с сигнальными последовательностями транспортируемой молекулы и белками ядерной поры; 2) комплекс нуклеопоринов, формирующих ЯПК и способных взаимодействовать друг с другом и биохимическими регуляторами, и 3) структурный комплекс поры, состоящий из набора индивидуальных компонентов, специфически меняющих пространственную организацию в процессе транспорта молекул и обеспечивающих, таким образом, их более эффективный перенос в нужном направлении. Рассмотрим коротко, как регулируется транспорт этими тремя системами.

    Первая система . Биохимические регуляторы насчитывают 5 основных типов белков, участвующих, как в импорте, так и в экспорте молекул: 1) транспортины (импортин a, импортин b и ряд других факторов); 2) Ran-белок (гуанозинтрифосфатаза), 3) ГТФ (гуанозинтрифосфат), 4) белок р10, а также 5) набор дополнительных белков, обеспечивающих активацию, ингибирование или изменение структурной конформации перечисленных выше белков, а также их транспорт между ядром и цитоплазмой. Функциональная роль каждого из перечисленных регуляторов была установлена в исследованиях, проведенных либо в системе in vitro (с использованием экстрактов из ооцитов амфибий), либо in vivo (преимущественно в экспериментах с дрожжевыми клетками). Транспортины играют роль рецепторных белков, которые через белки-посредники (адапторные белки) или напрямую связываются с сигнальными участками транспортируемой молекулы. Ran -это белок, который способен утилизировать энергию ГТФ. Он может иметь два состояния: связан либо с ГТФ (Ran-ГТФ) либо с ГДФ (Ran-ГДФ). Ran плохо гидролизует ГТФ, и для изменения его состояния необходимы дополнительные белки, находящиеся в ядре (RCCI) и в цитоплазме (RanGAP1, RanBP1, и RanBP2). Обе формы Ran присутствуют и в ядре и в цитоплазме, однако концентрация Ran-ГТФ выше в ядре, в то время как Ran-ГДФ обнаруживается преимущественно в цитоплазме.

    Предполагается, что белок р10 регулирует доступ транспортируемых комплексов в центральный канал поры со стороны цитоплазмы, возможно за счет его взаимодействия с нуклеопоринами, формирующими периферические компоненты поры (запирающая гранула транспортера, внутренние филаменты и другие). Однако основная функция этого белка заключается в том, что он способен связываться с Ran белком (в различных его формах) и транспортировать его в ядро или в цитоплазму.

    Процесс импорта молекул в ядро изучен в настоящее время более подробно, чем их экспорт. Первым требованием к транспортируемой молекуле является наличие в ее структуре сигнальной последовательности. Предполагается, что процесс импорта белка в ядро включает в себя несколько последовательных этапов: сначала импортин b связывается с импортином a, который затем напрямую или через адапторные белки узнает сигнальную последовательность в транспортируемой молекуле и связывается с ней. Этот тройной комплекс, благодаря взаимодействию импортина b с одним из периферических нуклеопоринов, закрепляется на периферическом компоненте поры, возможно, на цитоплазматической фибрилле. Параллельно с этим Ran -белок связывается в цитоплазме с ГТФ, после чего этот комплекс также закрепляется на цитоплазматической фибрилле, благодаря взаимодействию Ran -белка с нуклеопорином, недалеко от первого комплекса. Все эти процессы происходят без потребления энергии. Затем два комплекса взаимодействуют между собой и белком р10, обеспечивающим подготовку периферического отдела центрального канала для транспорта (предполагается, что р10 может открывать вход в центральный канал поры со стороны цитоплазмы). При этом происходит гидролиз ГТФ, и весь сформированный комплекс перемещается с цитоплазматической фибриллы в центральную часть поры и далее транспортируется внутрь ядра. Цитоплазматический вход в центральный канал поры после этого закрывается, а переместившийся в ядро комплекс отделяется от перенесенной молекулы и распадается на димер, состоящий из импортинов a и b, и Ran -ГДФ. Последний комплекс с помощью специфического фактора опять переводится в Ran -ГТФ, который затем разъединяет импортин a и импортин b. В последнее время появились данные о том, что многие молекулы могут импортироваться в ядро без участия Ran и, соответственно, без потребления энергии. При этом соответствующие транспортины и адапторные белки связываются в цитоплазме с импортируемым субстратом, и этот комплекс проходит через ядерную пору в ядро. В ядре транспортные факторы этого комплекса взаимодействуют с Ran-ГТФ, что приводит к высвобождению импортированного субстрата за счет превращения Ran-ГТФ в Ran-ГДФ. Затем транспортные факторы опять связываются с Ran-ГТФ и этот комплекс возвращается в цитоплазму.

    Предполагается, что многие из перечисленных выше биохимических факторов могут принимать участие в регуляции не только импорта, но и экспорта белков, а также РНК из ядра в цитоплазму. Однако процесс экспорта мРНК из ядра является более сложным по сравнению с импортом или экспортом белков, поскольку находится под контролем многих дополнительных факторов, включающих различные РНК-связывающие белки. Так, например, показано, что при экспорте мРНК из ядра она направляется в центральный канал поры 5’-концом, и важную роль в этом процессе, вероятно, играют кэп-связывающие белки, находящиеся на 5’-конце мРНК. Показано также, что для каждого класса РНК (мРНК, тРНК, рРНК, сплайсосомных РНК) существуют свои специфические белки-переносчики, одни из которых отсоединяются от РНК в процессе ее транспорта через пору и остаются в ядре, в то время как другие сопровождают молекулу РНК в цитоплазму (рис.3) .

    Рис.3. Схема импорта белков в ядро.
    1. Образование комплекса груз-рецептор (импортин). 2. Заякоривание комплекса на белках ядерной поры и собственно транслокация. 3. Диссоциация комплекса груз-импортин под воздействием Ran-ГТФ, высвобождение груза, образование комплекса Ran-ГТФ-импортин. 4. Реэкспорт образовавшегося комплекса в цитоплазму. 5. Гидролиз ГТФ и диссоциация комплекса.

    При экспорте молекул Ran-ГТФ образует комплекс с транспортинами, соответствующими адапторными белками и экспортируемым субстратом. Весь этот сложный комплекс проходит через пору в цитоплазму. Здесь цитоплазматические факторы RanGAP1, RanBP1, и RanBP2 стимулируют гидролиз ГТФ, что вызывает распад транспортированного комплекса с высвобождением Ran-ГДФ. То есть выделяющаяся при этом энергия используется для освобождения транспортируемых молекул от их переносчиков. Белок р10, который за счет небольших размеров (м.в. 10кДа) может свободно диффундировать между ядром и цитоплазмой, связывается в цитоплазме с Ran-ГДФ и транспортирует его в ядро. В ядре находится связанный с хроматином фактор RCCI, который вызывает высвобождение ГДФ и переход Ran в ГТФ-связанную форму. Процесс циркуляции Ran между ядром и цитоплазмой носит название ГТФ-азного цикла Ran. Таким образом, можно предположить, что градиент концентрации Ran, постоянно поддерживаемый между ядром и цитоплазмой, представляет механизм, определяющий направленность транспорта (рис.4) .

    Рис. 4. Схема экспорта белков из ядра.
    1. Образование комплекса груз-экспортин-Ran-ГТФ. 2. Заякоривание комплекса на белках ядерной поры и собственно транслокация. 3. Гидролиз ГТФ, диссоциация комплекса и высвобождение груза. 4. Реимпорт высвободившегося экспортина
    .

    Вторая система . Из 50 предполагаемых нуклеопоринов (Nup), входящих в состав ядерной поры высших эукариот, в настоящее время описано около 40 белков, 25 из которых уже секвенированы. Практически все белки ядерной поры охарактеризованы дрожжей (30 белков), а экспериментальные данные, полученные на высших организмах, являются малочисленными. Распределение многих нуклеопоринов на различных структурных компонентах поры было изучено иммуногистохимически с использованием антител к этим белкам. Установлено, что белки ЯПК можно условно разделить на 3 группы: первая содержит в своем составе белки со специфическими повторяющимися последовательностями (типа FXFG и др.), которые узнаются биохимическими факторами; вторая содержит белки, не имеющие таких последовательностей, а третья включает так называемые интегральные белки, локализующиеся либо в мембране ядерной оболочки, формирующей пору, либо в участке поры, находящемся в просвете между ядерными мембранами. Сравнительный анализ нуклеопоринов у высших и низших эукариот показал наличие 30-50% гомологии для 4 пар белков: Nup62/Nsp1p; Nup107/Nup84; Nup155/Nup170; Nup98/Nup116 (первыми в парах указаны белки высших, вторыми - белки низших эукариот; названия белков приводятся согласно общепринятой в литературе классификации). В последнее время было установлено, что нуклеопорины могут образовывать сложные комплексы, состоящие из 5-7 белков, что, вероятно, отражает их участие в формировании индивидуальных компонентов поры. Некоторые из нуклеопоринов, такие, как Nup188, Nup170, Nup157, Nic 96, POM152 составляют до 25% массы ядерных пор и присутствуют в 10-20 копиях на одну пору. Получены доказательства того, что нуклеопорины принимают непосредственное участие в регуляции транспорта молекул через ЯПК. Благодаря их взаимному контакту, а также взаимодействию с биохимическими факторами, несущими транспортируемую молекулу, они могут обеспечивать ее последовательную передачу, подобно эстафетной палочке, из одного участка ядерной поры в другой. Некоторые из нуклеопоринов могут, очевидно, напрямую связываться с транспортируемой молекулой. Так, например, Nup153 и Nup98, входящие в состав баскет-фибрилл, содержат РНК-связывающие домены, а Nup358 и CAN/Nup214, располагающиеся на цитоплазматических фибриллах поры, узнают сигнальные последовательности некоторых белков. Транспорт молекул через центральные компоненты поры находится под контролем белка Nup62, который является самым представительным и распределен вдоль всего центрального канала.

    Третья система . Использование высокоразрешающего сканирующего электронного микроскопа позволило впервые зафиксировать конформационные изменения индивидуальных компонентов ЯПК в процессе молекулярного транспорта. Было показано, что экспорт гигантской мРНК, синтезируемой генами колец Бальбиани у хирономуса, сопровождается циклической реорганизацией баскета и транспортера, функционирующих, как система открывающихся и закрывающихся диафрагм. Согласно наблюдениям, сделанным нами в сканирующем электронном микроскопе, в неактивной поре оба входа в центральный канал поры закрыты периферическими гранулами транспортера. Кроме того, вход в пору со стороны ядра дополнительно закрыт фибриллами баскета. На первом этапе экспорта молекула РНК, упакованная в процессе транскрипции с белками в 50 нм РНП частицу, перемещается внутри ядра к поре и прикрепляется к верхушке баскета. Предполагается, что Nup153 и Nup98, входящие в состав баскета, принимают активное участие в этом событии. Баскет-фибриллы формируют увеличивающееся в размере кольцо, которое постепенно захватывает частицу, и она погружается внутрь баскета. Поскольку максимальный диаметр центрального канала ЯПК составляет всего 26 нм, РНП частица внутри баскета декомпактизуется в 26 нм фибриллу. Было также обнаружено, что РНП частица вращается внутри баскета, что, вероятно, связано с необходимостью ее транспортировки в пору 5’-концом. Таким образом, баскет структура выполняет как бы роль “таможни”, проверяя и подготавливая молекулу РНП к транспорту через пору.

    На следующем этапе в периферической грануле транспортера со стороны ядра открывается отверстие и РНП фибрилла начинает перемещаться внутрь поры. Внутренний диаметр центральных цилиндров транспортера, имевший до этого размер 10 нм, расширяется до 26 нм, и фибрилла транспортируется через них дальше, в сторону цитоплазмы. Периферическая гранула транспортера со стороны цитоплазмы также формирует отверстие диаметром 26 нм, и РНП фибрилла постепенно полностью выходит в цитоплазму, где начинается процесс трансляции. После окончания транспорта все компоненты ЯПК быстро возвращаются в исходное состояние. Было установлено, что в процессе транспорта периферические гранулы транспортера могут перемещаться в вертикальном направлении на 5 нм, а сама пора - уплощаться или вытягиваться, способствуя, таким образом, более эффективному перемещению транспортируемой молекулы. Все эти данные свидетельствуют о том, что ЯПК является очень пластичной и динамичной структурой, непосредственно участвующей в регуляции транспорта. Вместе с тем следует отметить, что в последние годы появились данные о том, что пора может активно транспортировать до 300 и более небольших молекул в секунду. Это предполагает наличие каких-то дополнительных и пока неизвестных нам механизмов обеспечивающих такую высокую скорость перемещения молекул через пору. Поскольку пора с одной стороны тесно связана с ламиной и, следовательно, с ядерным матриксом, а с другой - через ядерную оболочку с цитоскелетом, процесс транспорта через ЯПК может также регулироваться на уровне этих внутриклеточных структур.

    1. Ядерный матрикс

    Этот комплекс не представляет собой какую-то чистую фракцию, сюда входят компоненты и ядерной оболочки, и ядрышка, и кариоплазмы. С ядерным матриксом оказались связаны как гетерогенная РНК, так и часть ДНК. Эти наблюдения дали основание считать, что матрикс ядра играет важную роль не только в поддержании общей структуры интерфазного ядра, но и может участвовать в регуляции синтеза нуклеиновых кислот. Ядерным матриксом некоторые исследователи называют нерастворимый внутриядерный каркас. Считается, что матрикс построен преимущественно из не гистоновых белков, формирующих сложную разветвленную сеть, сообщающуюся с ядерной ламиной . Возможно, ядерный матрикс принимает участие в формировании функциональных доменов хроматина. В геноме клетки имеются специальные незначащие А-Т-богатые участки прикрепления к ядерному матриксу (англ. S/MAR — M atrix/ S caffold A ttachment R egions), служащие, как предполагается, для заякоривания петель хроматина на белках ядерного матрикса. Впрочем, не все исследователи признают существование ядерного матрикса.

    1. Хроматин

    Хроматин представляет собой вещество, хорошо воспринимающее краситель (хромос), откуда и произошло его название. Хроматин состоит из хроматиновых фибрилл толщиной 20 – 25 н м, которые могут располагаться в ядре рыхло или компактно. На этом основании можно выделить эухроматин – рыхлый (или деконденсированный) хроматин, слабо окрашиваемый основными красителями, и гетерохроматин – компактный (или конденсированный) хроматин, хорошо окрашиваемый основными красителями. При подготовке клетки к делению в ядре происходит спирализация хроматиновых фибрилл и превращение хроматина в хромосомы. После деления в ядрах дочерних клеток происходит деспирализация хроматиновых фибрилл, и хромосомы снова преобразуются в хроматин. Таким образом, хроматин и хромосомы являются различными состояниями одного и того же вещества. Соотношение эухроматина и гетерохроматина является показателем синтетической активности клетки. На хроматиновых фибриллах в S-периоде интерфазы осуществляется редупликация ДНК. Эти процессы могут протекать также и в гетерохроматине, но значительно дольше. При наблюдении некоторых живых клеток, особенно растительных или же клеток после фиксации и окраски, внутри ядра выявляются зоны плотного вещества. В состав хроматина входит ДНК в комплексе с белком. В интерфазных клетках хроматин может равномерно заполнять объем ядра или же располагаться отдельными сгустками (хромоцентры). Часто он особенно четко выявляется на периферии ядра (пристеночный, примембранный хроматин) или образует внутри ядра переплетения довольно толстых (около 0.3 мкм) и длинных тяжей, образующих подобие внутриядерной цепи. Хроматин интерфазных ядер представляет собой несущие ДНК тельца (хромосомы), которые теряют в это время свою компактную форму, разрыхляются, деконденсируются. Степень такой деконденсации хромосом может быть различной в ядрах разных клеток. Когда хромосома или ее участокполностью деконденсирован, тогда эти зоны называют диффузным хроматином.

    При неполном разрыхлении хромосом в интерфазном ядре видны участки

    конденсированного хроматина (иногда называемого гетерохроматин). Показано, что степень деконденсации хромосомного материала в интерфазе может отражать функциональную нагрузку этой структуры. Чем более диффузен хроматин интерфазного ядра, тем выше в нем синтетические процессы. Падение синтеза РНК в клетках обычно сопровождается увеличением зон конденсированного хроматина. Максимально конденсирован хроматин во время митотического деления клеток, когда он обнаруживается в виде плотных телец - хромосом. В этот период хромосомы не несут никаких синтетических нагрузок, в них не происходит включение предшественников ДНК и РНК. Исходя из этого можно считать, что хромосомы клеток могут находиться в двух структурно-функциональных состояниях:

    В рабочем, частично или полностью деконденсированном, когда с их

    участием в интерфазном ядре происходят процессы транскрипции и

    редупликации;

    В неактивном - в состоянии метаболического покоя при максимальной их

    конденсированности, когда они выполняют функцию распределения и

    перенося генетического материала в дочерние клетки.

    В химическом отношении препараты хроматина представляют собой сложные комплексы дезоксирибонуклеопротеидов, в состав которых входит ДНК и специальные хромосомные белки - гистоны. В составе хроматина обнаружено также РНК. В количественном отношении ДНК, белок и РНК находятся как 1:1,3:0,2. О значении РНК в составе хроматина еще нет достаточно однозначных данных. Возможно, что эта РНК представляет собой сопутствующую препарату функцию синтезирующейся РНК и поэтому частично связанной с ДНК или это особый вид РНК, характерный для структуры хроматина. Огромная длина молекул ДНК эукариот предопределила появление специальных механизмов хранения, репликации и реализации генетического материала. Хроматином называют молекулы хромосомной ДНК в комплексе со специфическими белками , необходимыми для осуществления этих процессов. Основную массу составляют «белки хранения», так называемые гистоны . Из этих белков построены нуклеосомы - структуры, на которые намотаны нити молекул ДНК. Нуклеосомы располагаются довольно регулярно, так что образующаяся структура напоминает бусы. Нуклеосома состоит из белков четырех типов: H2A, H2B, H3 и H4. В одну нуклеосому входят по два белка каждого типа — всего восемь белков. Гистон H1, более крупный чем другие гистоны, связывается с ДНК в месте ее входа на нуклеосому. Нуклеосома вместе с H1 называется хроматосомой. Нить ДНК с нуклеосомами образует нерегулярную соленоид -подобную структуру толщиной около 30 нанометров , так называемую 30 нм фибриллу. Дальнейшая упаковка этой фибриллы может иметь различную плотность. Если хроматин упакован плотно, его называют конденсированным или гетерохроматином, он хорошо видим под микроскопом. ДНК, находящаяся в гетерохроматине, не транскрибируется , обычно это состояние характерно для незначимых или молчащих участков. В интерфазе гетерохроматин обычно располагается по периферии ядра (пристеночный гетерохроматин). Полная конденсация хромосом происходит перед делением клетки. Если хроматин упакован неплотно, его называют эу- или интерхроматином. Этот вид хроматина гораздо менее плотный при наблюдении под микроскопом и обычно характеризуется наличием транскрипционной активности. Плотность упаковки хроматина во многом определяется модификациями гистонов — ацетилированием и фосфорилированием .

    Считается, что в ядре существуют так называемые функциональные домены хроматина(ДНК одного домена содержит приблизительно 30 тысяч пар оснований), то есть каждый участок хромосомы имеет собственную «территорию». К сожалению, вопрос пространственного распределения хроматина в ядре изучен пока недостаточно. Известно, что теломерные (концевые) и центромерные (отвечающие за связывание сестринских хроматид в митозе ) участки хромосом закреплены на белках ядерной ламины.

    1. ДНК хроматина

    В препарате хроматина на долю ДНК приходится обычно 30-40%. Эта ДНК представляет собой двухцепочечную спиральную молекулу. ДНК хроматина обладает молекулярной массой 7-9*106. Такую сравнительно малую массу ДНК из препаратов можно объяснить механическими повреждениями ДНК в процессе выделения хроматина. Общее количество ДНК, входящее в ядерные структуры клеток, в геном организмов, колеблется от вида к виду. Сравнивая количество ДНК на клетку у эукариотических организмов, трудно уловить какие-либо корреляции между степенью сложности организма и количеством ДНК на ядро. Примерно одинаковое количество ДНК имеют различные организмы, как лен, морской еж, окунь (1,4-1,9 пг) или рыба голец и бык (6,4 и 7 пг). У некоторых амфибий в ядрах количество ДНК больше, чем в ядрах человека, в 10-30 раз, хотя генетическая конституция человека несравненно сложнее, чем у лягушек. Следовательно, можно предполагать, что “избыточное” количество ДНК у более низко организованных организмов либо не связано с выполнением генетической роли, либо число генов повторяется то или иное число раз. Сателлитная ДНК, или фракция ДНК с часто повторяющимися последовательностями, может участвовать в узнавании гомологичных районов хромосом при мейозе. По другим предположениям, эти участки играют роль разделителей (спейсеров) между различными функциональными единицами хромосомной ДНК. Как оказалось, фракция умеренно повторяющихся (от 102 до 105 раз) последовательностей принадлежит к пестрому классу участков ДНК, играющих важную роль в обменных процессах. В эту фракцию входят гены рибосомных ДНК, многократно повторенные участки для синтеза всех тРНК. Более того, некоторые структурные гены, ответственные за синтез определенных белков, также могут быть многократно повторены, представлены многими копиями (гены для белков хроматина - гистонов).

    Итак, ДНК эукариотических клеток гетерогенна по составу, содержит несколько классов последовательностей нуклеотидов:

    Часто повторяющиеся последовательности (>106 раз), входящие во фракцию сателитной ДНК и не транскрибирующиеся;

    Фракция умеренно повторяющихся последовательностей (102-105), представляющих блоки истинных генов, а также короткие последовательности, разбросанные по всему геному;

    Фракция уникальных последовательностей, несущая информацию для

    большинства белков клетки.

    ДНК прокариотического организма представляет собой одну гигантскую

    циклическую молекулу. ДНК эукариотических хромосом представляет собой линейные молекулы, состоящие из тандемно (друг за другом) расположенных репликонов разного размера. Средний размер репликона около 30 мкм. Тем самым в составе генома человека должно встречаться более 50 000 репликонов, участков ДНК, которые синтезируются как независимые единицы. Эти репликоны имеют начальную и терминальную точки синтеза ДНК. Представим себе, что у эукариотических клеток каждая из хромосомных ДНК, как и у бактерий, является одним репликоном. В этом случае при скорости синтеза 0,5 мкм в минуту (для человека) редупликация первой хромосомы с длиной ДНК около 7 см должна занять 140 000 минут, или около трех месяцев. На самом же деле благодаря полирепликонному строению молекул ДНК весь процесс занимает 7-12 ч.

    1. Белки хроматина

    К ним относятся гистоны и негистоновые белки.

    Гистоны - сильноосновные белки. Их щелочность связана с их обогащенностью основными аминокислотами (главным образом лизином и аргинином). Эти белки не содержат триптофана. Препарат суммарных гистонов можно разделить на 5 фракций:

    Н1 (от английского histone) - богатый лизином гистон, мол. Масса 2100;

    Н2а - умеренно богатый лизином гистон, масса 13 700;

    Н2б - умеренно богатый лизином гистон, масса 14 500;

    Н4 - богатый аргинином гистон, масса 11 300;

    Н3 - богатый аргинином гистон, масса 15 300.

    В препаратах хроматина эти фракции гистонов обнаруживаются в приблизительно равных количествах, кроме Н1, которого примерно в 2 раза меньше любой из других фракций. Для молекул гистонов характерно неравномерное распределение основных аминокислот в цепи: обогащенные положительно заряженными аминогруппами наблюдается на концах белковых цепей. Эти участки гистонов связываются с фосфатными группировками на ДНК, в то время как сравнительно менее заряженные центральные участки молекул обеспечивают их взаимодействие между собой. Таким образом, взаимодействие между гистонами и ДНК, приводящее к образованию дезоксирибонуклеопротеинового комплекса, носит ионный характер. Гистоны синтезируются на полисомах в цитоплазме, этот синтез начинается несколько раньше редупликации ДНК. Синтезированные гистоны мигрируют из цитоплазмы в ядро, где и связываются с участками ДНК. Функциональная роль гистонов не вполне ясна. Одно время считалось, что гистоны являются специфическими регуляторами активности ДНК хроматина, но одинаковость строения основной массы гистонов говорит о малой вероятности этого. Более очевидна структурная роль гистонов, которая обеспечивает не только специфическую укладку хромосомной ДНК, но и играет роль в регуляции

    транскрипции. Негистоновые белки - наиболее плохо охарактеризованная фракция хроматина. Кроме ферментов, непосредственно связанных с хроматином (ферменты, ответственные за репарацию, редубликацию, транскрипцию и модификации ДНК, ферменты модификации гистонов и других белков), в эту фракцию входит множество других белков. Весьма вероятно, что часть негистоновых белков представляет собой специфические белки - регуляторы, узнающие определенные нуклеотидные последовательности в ДНК.

    РНК хроматина составляет от 0,2 до 0,5% от содержания ДНК. Эта РНК представляет собой все известные клеточные типы РНК, находящиеся в процессе синтеза или созревания в связи с ДНК хроматина. В составе хроматина могут быть обнаружены липиды до 1 % от весового содержания ДНК, их роль в структуре и функционировании хромосом остается

    неясной.

    1. Хромосомы

    Первичная степень укладки молекул ДНК - хромосомная фибрилла. Наблюдения за структурой хроматина с помощью электронного микроскопа показали, что в составе ядра на ультратонких срезах всегда видны фибриллярные элементы. Впервые их обнаружил Х. Рис (1957), который и дал им название элементарных хромосомных фибрилл.

    Морфология хромосом

    Морфологию хромосом лучше всего изучать в момент их наибольшей конденсации, в метафазе и в начале анафазы. Хромосомы животных и растений в этом состоянии представляют собой палочковидные структуры разной длины с довольно постоянной толщиной, у большей части хромосом удается легко найти зону первичной перетяжки, которая делит хромосому на два плеча. Хромосомы с равными или почти равными плечами называют метацентрическими, с плечами неодинаковой длины - субметацентрическими. Палочковидные хромосомы

    с очень коротким, почти незаметным вторым плечом - акроцентрические.

    В области первичной перетяжки расположена центромера, или кинетохор. Это пластинчатая структура, имеющая форму диска. Она связана тонкими фибриллами с телом хромосомы в области перетяжки. От него отрастают пучки микротрубочки митотического веретена, идущие в направлении к центриолям. Они принимают участие в движении хромосом к полюсам клетки при митозе. Обычно одна хромосома имеет только одну центромеру (моноцентрические хромосомы), но могут встречаться хромосомы дицентрические и полицентрические. Некоторые хромосомы имеют вторичную перетяжку. Последняя обычно расположена вблизи дистального конца хромосомы и отделяет маленький участок, спутник. Вторичные перетяжки называют, кроме того, ядрышковыми организаторами, так как именно на этих участках хромосом в интерфазе

    происходит образование ядрышка. Здесь же локализована ДНК, ответственная за синтез рРНК. Плечи хромосом оканчиваются теломерами, конечными участками. Теломерные концы хромосом не способны соединяться с другими хромосомами или их фрагментами, в отличие от концов хромосом, лишенных теломерных участков, которые могут присоединяться к таким же разорванным концам других хромосом.

    Размеры хромосом у разных организмов варьируют в широких пределах. Так, длина хромосом может колебаться от 0,2 до 50 мкм. Самые мелкие хромосомы обнаруживаются у некоторых простейших, грибов. Наиболее длинные – у некоторых прямокрылых насекомых, у амфибий и у лилейных. Длина хромосом человека находится в пределах 1,5-10 мкм.

    Число хромосом у различных объектов тоже значительно колеблется, но

    характерно для каждого вида. У некоторых радиолярий число хромосом

    достигает 1000-1600. Рекордсменом среди растений по числу хромосом (около500) является папоротник ужовник, 308 хромосом у тутового дерева, у речногорака 196 хромосом. Наименьшее количество хромосом (2 на диплоидный набор) наблюдается у одной из рас аскариды, у сложноцветного Haplopappus gracilic- всего 4 хромосомы (2 пары). Совокупность числа, величины, величины и морфологии хромосом называется кариотипом данного вида. Даже у близких видов хромосомные наборы отличаются друг от друга или по числу хромосом, или по величине хотя бы одной или нескольких хромосом. Следовательно, структура кариотипа может быть таксономическим признаком.

    1. Ядрышко

    Практически во всех живых клетках эукариотических организмов в ядре видно одно или несколько обычно округлой формы тельц, сильно преломляющих свет, - это ядрышки, или нуклеолы. Ядрышко - не самостоятельная структура или органоид. Оно – производное хромосомы, один из ее локусов, активно функционирующий в интерфазе. В процессах синтеза клеточных белков ядрышко клетки является местом образования рибосомных РНК и рибосом, на которых происходит синтез полипептидных цепей. Ядрышко находится внутри ядра, и не имеет собственной мембранной оболочки, однако хорошо различимо под световым и электронным микроскопом . Основной функцией ядрышка является синтез рибосом . В геноме клетки имеются специальные участки, так называемые ядрышковые организаторы, содержащие гены рибосомной РНК (рРНК) , вокруг которых и формируются ядрышки. В ядрышке происходит синтез рРНК РНК полимеразой I , ее созревание, сборка рибосомных субчастиц. В ядрышке локализуются белки, принимающие участие в этих процессах. Некоторые из этих белков имеют специальную последовательность — сигнал ядрышковой локализации (NoLS, от англ. Nucleolus Localization Signal). Следует отметить, самая высокая концентрация белка в клетке наблюдается именно в ядрышке. В этих структурах было локализовано около 600 видов различных белков, причем считается, что лишь небольшая их часть действительно необходима для осуществления ядрышковых функций, а остальные попадают туда неспецифически.

    1. Количество ядрышек в клетке

    Начиная с зеленых водорослей, грибов и низших простейших и кончая высшими организмами, все клетки имеют обязательные внутриядерные структуры - ядрышки. Это правило имеет большое число исключений, которые только подчеркивают важность и необходимость ядрышка в жизненном цикле клетки. К таким исключениям относятся клетки дробящихся яиц, где ядрышки отсутствуют на ранних этапах эмбриогенеза, или клетки закончившие развитие и необратимо специализировавшиеся, например, некоторые клетки крови. Количество ядрышек в клетке может меняться, однако их число на ядро зависит от генного баланса клетки. Было найдено, что в образовании ядрышек участвуют определенные места некоторых хромосом, связь которых с ядрышком можно хорошо проследить в телофазе и профазе. Такие хромосомы, как правило, имеют вторичные перетяжки, зоны которых представляют собой места, где идет развитие ядрышек. Мак Клинток (1934) назвал эти участки хромосом “ядрышковыми организаторами”. Места вторичных перетяжек особенно характерны для расположения ядрышковых организаторов, но последние иногда могут находиться на концах хромосом или в нескольких местах по длине хромосомы. Общее число ядрышек на ядро определяется числом ядрышковых организаторов

    и увеличивается согласно плоидности ядра. Однако часто количество ядрышек на ядро бывает меньше числа ядрышковых организаторов. Было показано, что ядрышки могут сливаться; кроме того, в образовании одного ядрышка иногда участвует несколько организаторов.

    Еще в работах М.С.Навашина (1934) было показано, что хромосомный локус, который в нормальных условиях образует крупное ядрышко, становится неактивным, когда после гибридизации в ядре появляется более “сильный” локус на другой хромосоме. Тот факт, что в определенных условиях может подавляться активность одних ядрышковых организаторов или же повышаться активность других, бывших до этого в латентном, скрытом состоянии, указывает на то, что в клетках поддерживается определенный баланс количества ядрышкового материала или, другими словами, регулируется “валовая” продукция, выдаваемая ядрышками.

    Исходя из перечисленных выше фактов, можно сделать следующие заключения:

    Образования ядрышек и их число связаны с активностью определенных

    участков хромосом - ядрышковых организаторов, которые расположены

    большей частью в зонах вторичных перетяжек;

    Изменения в числе ядрышек в клетках данного типа могут происходить за счет слияния ядрышек или за счет сдвигов в хромосомном балансе клетки.

    1. Физиология и химия ядрышка

    Ядрышко по сравнению с другими компонентами клетки характеризуется как самая плотная структура с наиболее высокой концентрацией РНК, с чрезвычайно высокой активностью в отношении синтеза РНК. Концентрация РНК в ядрышках всегда выше концентрации РНК в других компонентах клетки, так концентрация РНК в ядрышке может быть в 2-8 раз выше, чем в ядре, и в 1-3 раза выше, чем в цитоплазме. Отношение концентрации РНК в ядре, ядрышке и цитоплазме клеток печени мыши составляет 1:7,3:4,1, в клетках поджелудочной железы - 1:9,6:6,6. В ядрышке не обнаруживается ДНК, но все же при исследовании фиксированных клеток вокруг ядрышка всегда выделяется зона хроматина. Этот околоядрышковый хроматин, по данным электронной микроскопии, представляется, как интегральная часть сложной структуры ядрышка. Ядрышко - одно из самых активных мест в клетке по включению предшественников в РНК. Ядрышковая РНК является предшественником цитоплазматической РНК. Цитоплазматическая РНК синтезируется в ядрышке.

    1. РНК ядрышек

    Оценивая общее содержание в ядрышковых фракциях белков, РНК и ДНК, можно видеть, что на долю РНК приходится около 10% всей массы ядрышка. Так как основную массу цитоплазматической РНК составляет рибосомная РНК, то можно сказать, что ядрышковая РНК принадлежит к этому классу. Подтверждением представлений того, что именно ядрышко является местом синтеза рРНК и образования рибосом, послужило то, что из ядрышковых препаратов были выделены РНП-частицы, которые как по составу РНК (по седиментационным свойствам), так и по размеру можно охарактиризовать как рибосомы или их предшественники с различными коэффициентами седиментации.

    1. ДНК ядрышек

    Биохимическими исследованиями обнаружено в выделенных ядрышках определенное количество ДНК, которую можно отождествить с околоядрышковым хроматином или с ядрышковыми организаторами хромосом. Содержание ДНК в выделенных ядрышках - 5-12% от сухого веса и 6-17% от всей ДНК ядра. ДНК ядрышкового организатора - это та самая ДНК, на которой происходит синтез ядрышковой, т.е. рибосомной, РНК. Таким образом из биохимических работ появились представления о том, что в ядрышке на ДНК локализованы многочисленные одинаковые гены для синтеза рРНК. Синтез рРНК идет путем образования огромного предшественника и дальнейшего его превращения (созревания) в более короткие молекулы РНК для большой и малой субъедениц рибосом. Изучая ядрышки ооцитов тритонов, исследователи столкнулись с интересным явлением - сверхчисленностью ядрышек. У X. laevis во время роста ооцита появляется до 1000 мелких ядрышек, не связанных с хромосомами. Именно эти ядрышки выделил О.Миллер. вместе с этим на ядро ооцита увеличивается количество рДНК. Это явление получило название амплификации. Оно заключается в том, что происходит сверхрепликация зоны ядрышкового организатора, многочисленные копии отходят от хромосом и становятся дополнительно работающими ядрышками. Такой процесс необходим для накопления огромного (1012) количества рибосом на яйцевую клетку, что обеспечит в будущем развитие эмбриона на ранних стадиях даже при отсутствии синтеза новых рибосом. Сверхчисленные ядрышки после созревания яйцевой клетки исчезают.

    1. Ультраструктура ядрышек

    При изучении большого числа различных клеток животных и растений отмечена волокнистая или сетчатая структура ядрышек, заключенная в более или менее плотную диффузную массу. Были предложены названия для этих частей: волокнистая часть - нуклеонема и диффузная, гомогенная часть – аморфное вещество, или аморфная часть. Сделанные почти одновременно с этим электронно-микроскопичес-кие исследования также выявили волокнисто-нитчатоестроение ядрышек.

    Однако такое нитчатое строение ядрышка не всегда четко выражено. У

    некоторых клеток отдельные нити нуклеонем сливаются, и ядрышки могут быть совершенно однородными. При более пристальном изучении ядрышка можно заметить, что основные структурные компоненты ядрышка - плотные гранулы диаметром около 15 нм и тонкие фибриллы толщиной 4-8 нм. Во многих случаях (ооциты рыб и амфибий, меристематические клетки растений) фибриллярный компонент собран в плотную центральную зону (сердцевина), лишенную гранул, а гранулы занимают переферическую зону ядрышка. В ряде случаев (например, клетки корешков растений) в этой гранулярной зоне не наблюдается никакой дополнительной структуризации. Было найдено, что аморфные участки ядрышек неоднородны. В их структуре выявляются малоокрашенные зоны - фибриллярные центры - и окружающие их более темные участки, тоже имеющие фибриллярное строение. Кроме этих двух компонентов ядрышек в последнее время большое внимание уделялось строению околоядрышкового хроматина. Этот хроматин и внутриядрышковая сеть ДНК являются единой системой и представляют собой интегральный компонент ядрышка. Гранулы и фибриллярная часть состоят из рибонуклеопротеидов. Показано, что именно светлые фибриллярные центры содержат рДНК.

    1. Судьба ядрышка при делении клеток

    Известно, что ядрышко исчезает в профазе и появляется вновь в средней телофазе. По мере затухания синтеза рРНК в средней профазе происходит разрыхление ядрышка и выход готовых рибосом в кариоплазму, а затем и в цитоплазму. При конденсации профазных хромосом фибриллярный компонент ядрышка и часть гранул тесно ассоциируют с их поверхностью, образуя основу матрикса митотических хромосом. Этот фибриллярно-гранулярный материал, синтезированный до митоза, переносится хромосомами в дочерние клетки. В ранней телофазе по мере деконденсации хромосом происходит высвобождение компонентов матрикса. Его фибриллярная часть начинает собираться в мелкие многочисленные ассоциаты - предъядрышки, которые могут объединяться друг с другом. По мере возобновления синтеза РНК предъядрышки претерпевают перестройку, что выражается в появлении в их структуре гранул РНК, а затем в становлении дефинитивной формы нормально функционирующего ядрышка.

    1. К ариоплазма

    Клетки всех организмов имеют единый план строения, в котором четко проявляется общность всех процессов жизнедеятельности. Каждая клетка включает в свой состав две неразрывно связанные части: цитоплазму и ядро. Как цитоплазма, так и ядро характеризуются сложностью и строгой упорядоченностью строения, и, в свою очередь, в состав их входит множество разнообразных структурных единиц, выполняющих совершенно определенные функции. Кариоплазма (ядерный сок, нуклеоплазма) в виде неструктурированной массы окружает хромосомы и ядрышки. Вязкость ядерного сока примерно такая же, как вязкость основного вещества цитоплазмы. Кислотность ядерного сока, определенная путем микроинъекции индикаторов в ядро, оказалась несколько выше, чем у цитоплазмы. Кроме того, в ядерном соке содержатся ферменты, участвующие в синтезе нуклеиновых кислот в ядре, и рибосомы. Ядерный сок не окрашивается основными красителями, поэтому его называют ахроматиновым веществом, или кариолимфой, в отличие от участков, способных окрашиваться, — хроматина. Кариоплазма — основная внутренняя среда ядра, она занимает все пространство между ядрышком, хроматином, мембранами, всевозможными включениями и другими структурами. Кариоплазма под электронным микроскопом имеет вид гомогенной или мелкозернистой массы с низкой электронной плотностью. В ней во взвешенном состоянии находятся рибосомы, микротельца, глобулины и различные продукты метаболизма. Кариоплазма характеризуется особыми структурными и функциональными свойствами. Функции кариоплазмы чрезвычайно многообразны, поскольку с ней связаны коллоидные свойства ядра, а также явления роста, синтеза ДНК, различных РНК и белка, передачи раздражения и т. п. Физико-химические свойства кариоплазмы обусловлены ее коллоидным характером. Они определяются наличием в ней множества частиц, в совокупности образующих огромную поверхность взаимодействия со средой, что обеспечивает прохождение разнообразных физико-химических процессов.
    Благодаря силе поверхностного натяжения, возникающей на микроскопическом комочке кариоплазмы, осуществляется процесс адсорбции — концентрации одного вещества на поверхности другого. В зависимости от увеличения, даваемого микроскопом, кариоплазма представляется гомогенной или зернистой, гранулированной. Размер гранул близок к размеру макромолекул. Вязкость кариоплазмы, измеряемая сантипаузами, может существенно изменяться под действием внешних или внутренних факторов (за единицу измерения принята вязкость воды при температуре 20 град.). Вязкость кариоплазмы, измеряемая сантипуазами, может существенно изменяться под действием внешних или внутренних факторов (за единицу измерения принята вязкость воды при температуре 20 град.). Вязкость кариоплазмы растительной клетки достигает 3-4 сП. В частности, она зависит от температуры и концентрации: гипотонические растворы вызывают ее понижение, гипертонические — повышение. В процессе митотического деления
    клетки ее вязкость непрерывно возрастает. Кариоплазма - наименее плотная часть ядра, в то время как мембранные системы имеют более плотную структуру. Плотность кариоплазмы колеблется в пределах от 1,025 до 1,055. Химический состав ее крайне сложен и представлен органическими и неорганическими веществами. Основные органические вещества — это белки, углеводы, дезоксирибонуклеиновые и рибонуклеиновые кислоты, жироподобные вещества (липиды).
    Из простых белков (протеинов) в кариоплазме содержатся гистоны, протамины, альбумины и глобулины, а из протеидов — липопротеиды, глюкопротеиды и нуклеопротеиды. Большая часть белков относится к глобулярным, меньшая — к фибриллярным структурам. Белки глобулярной формы, способные превращаться в фибриллярные, называются
    структурными.
    Для исследования ультраструктуры ядра используют метод, основанный на гомогенизации ткани или разрушении ядерных стенок и последующем разделении субъядерных структур (фракционирование). В ней основными являются ферменты, принимающие участие в процессах активизации аминокислот при синтезе белка. К этой же фракции относятся ферменты, катализирующие многие реакции, нуждающиеся в энергии АТФ.
    Из неорганических веществ в кариоплазме обычно содержится большое количество воды (80-85 %), играющей важную роль в жизнедеятельности как ядра, так и клетки. Вода кариоплазмы может находиться в свободном состоянии (в виде растворителя) и быть связанной водородными связями с полярными
    группами белковых молекул.
    Другие неорганические вещества кариоплазмы содержатся в виде солей, ионов или в соединении с белками, аминокислотами, углеводами и липидами. Наибольшее значение в построении кариоплазмы имеют элементы — кальций, фосфор, калий и сера. На кариоплазму приходится примерно 20 % массы ядра. Кроме широко распространенных элементов (С, О, Н, N, К, Са, Mg, Р, S, Fe, Na, Cl), в клетках некоторых организмов встречаются Li, Ва, Cu, Zn, Si, F, Сг, Br, J, Ag. Несмотря на то что многие из них содержатся в очень небольших количествах, они необходимы для правильного
    функционирования ядра и клетки. Предполагается, что ионы металлов выполняют роль кофакторов ядерных ферментов, факторов проницаемости и переноса веществ через мембрану и оболочку, комплексообразователей неорганического компонента самой кариоплазмы, поддерживающего определенную ионную силу жидкой фазы. Однако функция каждого из этих металлов строго специфична. Этим объясняется значение микроэлементов в жизнедеятельности организмов.

    1. Роль ядра

    Ядро осуществляет две группы общих функций: одну, связанную собственно с хранением генетической информации, другую - с ее реализацией, с обеспечением синтеза белка. В первую группу входят процессы, связанные с поддержанием наследственной информации в виде неизменной структуры ДНК. Эти процессы связаны с наличием так называемых репарационных ферментов, ликвидирующих спонтанные

    повреждения молекулы ДНК (разрыв одной из цепей ДНК, часть радиационных повреждений), что сохраняет строение молекул ДНК практически неизменным в ряду поколений клеток или организмов. Далее, в ядре происходит воспроизведение или редупликация молекул ДНК, что дает возможность двум клеткам получить совершенно одинаковые и в качественном и в количественном смысле объемы генетической информации. В ядрах происходят процессы изменения и рекомбинации генетического материала, что наблюдается во время мейоза (кроссинговер). Наконец, ядра непосредственно участвуют в процессах

    распределения молекул ДНК при делении клеток. Другой группой клеточных процессов, обеспечивающихся активностью ядра, является создание собственно аппарата белкового синтеза. Это не только синтез, транскрипция на молекулах ДНК разных информационных РНК и рибосомных РНК. В ядре эукариотов происходит также образование субъедениц рибосом путем комплексирования синтезированных в ядрышке рибосомных РНК с рибосомными белками, которые синтезируются в цитоплазме и переносятся в ядро.

    Таким образом, ядро представляет собой не только вместилище генетического материала, но и место, где этот материал функционирует и воспроизводится. Поэтому выпадение лил нарушение любой из перечисленных выше функций губительно для клетки в целом. Так нарушение репарационных процессов будет приводить к изменению первичной структуры ДНК и автоматически к изменению структуры белков, что непременно скажется на их специфической активности, которая может просто исчезнуть или измениться так, что не будет обеспечивать клеточные функции, в результате чего клетка погибает. Нарушения редупликации ДНК приведут к остановке размножения клеток или к появлению клеток с неполноценным набором генетической информации, что также губительно для клеток. К такому же результату приведет нарушение процессов распределения генетического материала (молекул ДНК) при делении клеток. Выпадение в результате поражения ядра или в случае нарушений каких-либо регуляторных процессов синтеза любой формы РНК автоматически приведет к остановке синтеза белка в клетке или к грубым его нарушениям. Значение ядра как хранилища генетического материала и его главная роль в определении фенотипических признаков были установлены давно. Немецкий биолог Хаммерлинг одним из первых продемонстрировал важнейшую роль ядра. Он выбрал в качестве объекта своих экспериментов необычайно крупную

    одноклеточную (или неклеточную) морскую водоросль Acetabularia. Существует два близко родственных вида A. medierranea и A. crenulata, различающихся только по форме “шляпки”. В ряде экспериментов, в том числе таких, в которых “шляпку” отделяли от нижней части “стебелька” (где находится ядро), Хаммерлинг показал, что для нормального развития шляпки необходимо ядро. В дальнейших экспериментах, в которых соединяли нижнюю часть, содержащую ядро одного вида с лишенным ядра стебельком другого вида, у таких химер всегда развивалась шляпка, типичная для того вида, которому принадлежит ядро. При оценке этой модели ядерного контроля следует, однако, учитывать примитивность организма, использованного в качестве объекта. Метод пересадок был применен позднее в экспериментах, проведенных в 1952 г. двумя американскими исследователями, Бриггсом и Кингом, с клетками лягушки Rana pipenis. Эти авторы удаляли из неоплодотворенных яйцеклеток ядра и заменяли их ядрами из клеток поздней бластулы, уже проявлявших признаки дифференцировки. Во многих случаях из яиц реципиентов развивались нормальные взрослые лягушки.

    Заключение:

    Ядро (лат. nucleus ) — это один из структурных компонентов эукариотической клетки , содержащий генетическую информацию (молекулы ДНК ), осуществляющий основные функции: хранение, передача и реализация наследственной информации с обеспечением синтеза белка . Ядро состоит из хромати́на , я́дрышка , кариопла́змы (или нуклеоплазмы) и ядерной оболочки. В клеточном ядре происходит репликация (или редуплика́ция) — удвоение молекул ДНК, а также транскрипция — синтез молекул РНК на молекуле ДНК. Синтезированные в ядре молекулы РНК модифицируются, после чего выходят в цитоплазму . Образование обеих субъединиц рибосом происходит в специальных образованиях клеточного ядра — ядрышках . Таким образом, ядро клетки является не только вместилищем генетической информации, но и местом, где этот материал функционирует и воспроизводится.

    Список литературы:

    1. Ченцов Ю.С., Поляков В.Ю. “Ультраструктура клеточного ядра”. М., Наука,

    1974

    1. Зегнбуш П. “Молекулярная и клеточная биология”. М., Мир, т.1,2, 1982
    2. Ленинджер А. Л. Основы биохимии. В 3 Т. М.: Мир, 1985. 1056 с.
    3. Решетников В. Н. Клеточные ядра высших растений. Состав, структура, функции. Минск: Навука i тэхнiка, 1992. 88 с.
    4. Харрис Г. Ядро и цитоплазма. М.: Мир, 1973. 192 с.
    5. Davis L.I. The nuclear pore complex // Annu. Rev. Biochem. 1995. V. 64. P. 865-896.
    6. Ryan K. J. and Wente S.R. The nuclear pore complex: a protein machine bridging the nucleus and cytoplasm.// Curr.Opin. Cell Biol.. 2000. C.12.P.361-371.

    При подготовке реферата были использованы материалы, полученные из Всемирной Биологической Сети (BIOSCI) посредством сети Internet.

    31

  • 6. Гиалоплазма. Органеллы, их классификация. Биологические мембраны.
  • 7. Эндоплазматическая сеть, строение, виды эпс. Строен и функц рибосом.
  • 8. Вакулярно-транспортная система, ее биологическая роль. Понятие секреторного пути. Комплекс гольджи.
  • 9. Лизосомы, их строение, классификация и функции. Характеристика гетерофагического и аутофагического циклов лизосом
  • 10. Митохондрии. Атф.
  • 13. Общая характеристика какркасно-двигательной системы клетки. Биологическая роль цитоскелета
  • 14. Микрофиламенты и промежуточные филаменты
  • 15. Микротрубочки. Кинезины и денеиды. Центриоли
  • 16. Общебиологическая характеристика поверхностного аппарат животной клетки, его строение и функции
  • 17. Клеточная сигнализация и ее формы. Специфические сигнальные вещества и их характеристика.
  • 19. Основные биологические механизмы транспорта веществ в клетку. Биологические основы транспорта малых молекул. Унипорт и копорт(антипорт и симпорт)
  • 21. Клеточный цикл. Деление клетки. Митоз, его биологическое значение.
  • 22. Мейоз, его биологическое значение. Характеристика редукционного и эквационного деления мейоза.
  • 23. Биологич основы регуляции клеточного цикла. Циклины и циклинзависимые киназы
  • 24. Клеточный цикл. Биологический контроль состояния наследственного материала в процессе клеточного цикла на примере белка р53
  • 25. Половые клетки. Этапы гаметогенеза. Строение сперматозоида. . Классифик яйцеклеток по количеству питательных веществ и их распред в цитоплазме.
  • 26. Формы бесполого и полового размнож у эукариот,их цитологические основы биологическое значение. Примеры.
  • 27. Пол. Определение и предопределение пола.
  • 28. ОРнтогенез. Его типы и периодизация.Эмбриональный период и его этапы.
  • 29. Эмбриональный период онтогенеза. Спосбы дробления и типы бластул. Спосб гаструл.
  • 30. Эмбриональныйл период онтогенеза. Способы формирования мезодермы. Строение нейрулы. Гисто и органогенез
  • 31. Гибридологический метод. Законы Менделя, их цитологическое обоснование
  • 32. Сцепленное наследование. Опыты Моргана. Хромосомная теория наследственности. Кроссинговер, его биологическое значение. Карты хромосом.
  • 33. Человек как объект генетических исследований. Менделирующие признаки у человека, их характеристика на примере пигментной ксеродермы.
  • 35. Характеристика х-сцепленного доминантного, рецессивного и у-сцепленного наследования признаков у человека.
  • 36. Взаимодействие аллелей одного гена, их характеристика. Механизмывзаимодействия аллелей одного гена на примере наследования формы семян гороха. Множественный аллелизм.
  • 37. Полигенное наследование. Взамодейств аллелей разных генов. Плеотропия.
  • 38. Эпигенетическое наследование. Геномный импринтинг.
  • 39. Цитоплазматическое наследование. Митоходриальное наследование
  • 40. Закономерности наследования количественных признаков. Оценка соотносит роли наследственности и среды в проявл количств признаков. Понятие наследуемости.
  • 41. Близнецовый метод, область применения.
  • 42. Характеристика генома эукариот и особ генома человека. Строен эукриотич гена.
  • 43. Характеристика генома прокариот. Понятие оперона.
  • 44. Репликация днк. Особенности репликации у эукариот. Теломеры и теломеразы, их билогическое значение.
  • 45. Транскрипция. Характеристика этапов инициации, элонгации и терминации. Особенности транскрипции у про- и эукариот.
  • 46. Посттранскрипционный процессинг. Понятие об альтернативном сплайсинге. Строение зрелой м-рнк
  • 47. Трансляция. Генетический код. Свойства генетического кода.
  • 48. Регуляция активности генов у прокариот на примере лак-оперона
  • 50. Общая схема регуляции генов у эукариот
  • 51. Регуляция активности генову эукариот. Белов р53. Альтернативный сплайсинг.
  • 52. Регуляция активности генов на уровне трансляции и посттрансляционных преобразований белков. Трансляционная репрессия на примере регуляции железом трансляции белков ферритина.
  • 53. Изменчивость и её формы. Модиф и комбин изменч.
  • 1) Ненаследственная. (та делится на средовую и модификационную)
  • 54. Мутации, их свойства. Классификация мутаций
  • 55. Генные мутации, их классификация, механизм возникновения.
  • 56. Хромосомные мутации, их классификация и общая характеристика. Геномные мутации, их классификация, механизмы возникновения.
  • 57. Природные антимутационные механизмы. Световая и темновая репарация.
  • 58. Хромосомные болезни. Связанные с анеуплоидиями по аутосомам.
  • 59. Хромосом болезни связанные с анеуплоидиями по половым хромосомам.
  • 60. Генные болезни, их генетическая классификация и механизмы возникновения.
  • 61. Характеристика наследственных болезней человека. Мультифакториальные болезни, доказательства их наследственной природы.
  • 63. Генетический полиморфизм. Биологическое значение генетического полиморфизма. Генетический груз.
  • 72. Основные направления эволюции кожных покровов хордовых.
  • 73. Основные направления эволюции пищеварительной системы хордовых
  • 74. Основные направления эволюции дыхательной системы хордовых
  • 75. Основные направления эволюции кровеносной системы хордовых.
  • 76. Основные направления эволюции выделительной системы хордовых
  • 77. Иммунитет, его классификация. Понятие антигена и антигенной детерминанты. Клеточный иммунитет. Классификация т-лимфоцитов.
  • 1) Неспецифический
  • 2) Специфический
  • 1)Антигены бактерий
  • 80. Этапы антрогенеза, их зарактеристика. Пути и факторы эволюции человека. Систематическое положение человека в животном мире. Современные доказательства происхождения человека.
  • 81. Формы взаимоотношений между организмами. Классификация паразитов (истинные, ложные, облигатные, факультативные, временные и постоянные, эндемичные и космополитные)
  • 86. Жизненный цикл возбудителя малярии.
  • II. Спорогония.
  • 87. Жизненный цикл возбудителя токсоплазмоза.
  • 88. Возбудители лейшманиозов, их жизненные циклы.
  • 1 .Лейшманиальная
  • 2. Лептомонадная
  • 89. Возбудители трипаносомозов, их жизненные циклы.
  • 90. Возбудитель амебиаза, его жизненный цикл.
  • 91. Возбудители лямблиоза и балантидиаза, их жизненные циклы.
  • 92. Плоские черви – возбудители цестодозов.
  • 1)Свиной цепень (вооруженный) (Taenia solium)
  • 93. Плоские черви - возбудители трематодозов человека, их биология, жизненные циклы. Биологические основы профилактики трематодозов.
  • 94. Круглые черви - возбудители нематодозов человека (геогельминтозов), их биология, жизненные циклы. Биологические основы профилактики нематодозов-геогельминтозов.
  • 95. Круглые черви - возбудители нематодозов человека (биогельминтозов)
  • 96. Комары
  • 97. Клещи
  • 98. Блохи
  • 101. Цепи питания
  • 3. Ядро, его строение и биологическая роль.

    Ядро состоит из 1)поверхн аппарата ядра (в нем выдлел: 2 мембраны, перинуклеарн пространств, поровые комплексы, ламину.) 2) кариоплазмы (нуклеоплазмы) 3) хроматина (в нём эухроматин и гетерохроматин) 4) ядрышка (грануляр и фибриляр компонент.)

    Ядро – это структура клетки которая выполняет функцию хранения и передачи инф, а так же регулирует все жизненные процессы клетки. Ядро несёт в себе генетическую (наследственную) инф в виде ДНК. Ядра обычно имеют шаровидную или яйцевидную форму. Я. окружено ядерн оболочкой. Ядерная оболочка пронизана ядерными порами. Через них ядро обменивается веществами с цитоплазмой(внутр средой клетки). Наружная мембрана переходит в эндоплпзматич ретикулум и может быть усеяна рибосомами. Отношение размеров ядра и клетки зависит от функциональной активности клетки. Большинство клеток одноядерные. Двуядерными могут быть кардиомиоциты. Всегда двуядерны инфузории. В них характерен ядерный дуализм.(то есть ядра различ по строению и финкциям). Малое ядро (генеративное) – диплойдное. Оно обеспечивает только половой процесс у инфузорий. Большое (вегетативное) ядро полиплойдное. Оно регулирует все остальные жизненные процессы. Многоядерными бывают клетки некоторых простейших и клетки скелетной мускулатуры.

    4. Поверхностный аппарат ядра, его строение и функции. Строение ядерного порового комплекса. Импор и экспорт белков через ядерные поры.

    П.А.Я. или кариотека ) имеет микроскопическую толщину и поэтому виден в световой микроскоп. Поверхностный аппарат ядра включает:

    а)ядерную оболочку, или кариолемму;. б)паровые комплексы; в)периферическую плотную пластинку (ППП), или ламину.

    (1) Ядерная оболочка (кариолемма). состоит из 2 мембран - наружной и внутренней, разделён­ных перинукляеарным пространством. Обе мембраны имеют такое же жидкосто-мозаичное строе­ние, как и плазматическая мембрана, и различаются по набору белков. Среди этих белков имеются ферменты, пере­носчики и рецепторы. Наружная ядерная мембрана является продолжением мембран грЭПС и может быть усеяна рибосомами, на которых идёт синтез белка. Со стороны цитоплазмы наружная мембрана окружена сетью промежуточных (ви-ментиновых) фипаментов. Между наружной и внутренней мембранами находится перинуклеарное пространство -полость шириной 15-40 нм, содержимое которого сообщается с полостями каналов ЭПС. По составу перинуклеарное пространство близко к гиалоплазме и может содержать синтезированные рибосомами белки. Главная функция кариолеммы - изоляция гиалоплазмы от кариоплазмы. Специальные белки ядерных мембран, расположенные в облас­ти ядерных пор, осуществляют транспортную функцию. Ядерная оболочка пронизана ядерными порами, через которые осуществляется связь кариоплазмы и гиалоплазмы. Для регуляции такой связи в порах находятся (2) поровые комплексы. Они занимают 3-35% поверхности ядер­ной оболочки. Число ядерных пор с поровыми комплексами является изменчивой величиной и зависит от активности ядра. В области ядерных пор наружная и внутренняя ядерные мембраны сливаются. Со­вокупность структур, связанных с ядерной порой, называется комплексом ядерной поры. Типичный поровый ком­плекс представляет собой сложную белковую структуру - содержит более 1000 молекул белка. В центре поры рас­положена центральная белковая глобула (гранула), от которой по радиусу отходят тонкие фибриллы к перифериче­ским белковым глобулам, образуя диафрагму поры. По периферии ядерной поры находятся две параллельные коль­цевые структуры диаметром 80-120 нм (по одному с каждой поверхности кариолеммы), каждое из которых образо­вано 8 белковыми гранулами (глобулами).

    Белковые глобулы перового комплекса подразделяются на центральные и пе­риферические . С помощью периферических глобул осуществляется транспорт макромолекул из ядра в гиалоплазму. (фиксируются в мем­бране специальным интегральным белком. От этих гранул к центру сходятся белковые фибриллы, формирующие пе­регородку - диафрагму поры)

    В нем участвуют специальные белки периферических глобул - нуклеопорины. В периферических глобулах имеется особый белок - переносчик молекул т-РНК

    Центральная глобула специализируется на транспорте и-РНК из ядра в гиалопдазму. В её составе имеются ферменты, участвующее в химической модификации иРНК - ее процессинге.

    Гранулы поровых комплексов структурно связаны с белками ядерной ламины, которая участвует в их организации

    Функции комплекса ядерной поры:

      Обеспечение регуляции избирательного транспорта в-в между цитоплазмой и ядром.

      Активный перенос в ядро белков

      Перенос в цитоплазму субъединиц рибосом

    (3) ППП или ламина

    слой толщиной 80-300 нм. прилегает изнутри к внутренней ядерной мембране. Внутренняя ядерная мембрана гладкая, ее интегральные белки связаны с ламиной (периферической плотной пластинкой). Ламина состоит из специальных переплетенных белков-ламинов, образующих периферический кариоскелет. Белки-ламины относятся к классу промежуточных филаментов (скелет­ных фибрилл). У млекопитающих известно 4 вида этих белков - это ломимы А, В, В 2 и С. Эти белки поступают в яд­ро из цитоплазмы. Ламины разных видов взаимодействуют между сбой и образуют белковую сеть под внутренней мембраной ядерной оболочки. С помощью ламинов «В» ППП соединяется со спец интеграл белкомядерн оболочки. С ППП взаимодействуют и белки приферич голобул «внутр кольца» порового комплекса. К ламину «А» присоед теломерн участки хромосом.

    Функции ламины: 1) поддерд форму ядра. (даже есл бое мембраны разруш, то ядро за счет ламины сохр свою форму и поровые комп-сы ост на своём месте.

    2) служит компонентом кариоскелета

    3) участв в сборке ядерн оболочки (формирование кариоллемы) при делен клетки.

    4) в интерфазном ядре к ламине прикрепл хроматин. таким образом ламина обеспеч функцию фиксации хроматина в ядре (обеспеч упорядочн укладку хроматина, участвует в пространственной организации хроматина в интерфазном ядре). Ламин «А» взаимодейств с теломерными участками хромосом.

    5) обеспеч структур организацию поровых комплексов.

    импорт и экспор белков.

    В ядро через ядерные поры поступают: синтезированные цитоплазматическими рибосомами белки-ферменты, которые участвуют в процессах репликации и репарации (восстановления повреждений в ДНК); белки-ферменты, участвующие в процессе транскрипции; белки-репрессоры, которые регулируют процесс транскрипции; белки-гистоны.(которые связаны с молекулой ДНК и образуют хроматин); белки, входящие в состав субъединиц рибосом: белки ядерного матрикса, образующие кариоскелет; нуклеотиды; ионы минеральных солей, в частности, ионы Са и Mg .

    Из ядра в цитоплазму выходят и-РНК. т-РНК и субъединицы рибосом, которые представляют собой рибонуклеопротеидные частицы (р-РНК, связанные с белками).

    "

    Ядерные поровые комплексы (ЯПК) представляют собой симметричные структуры, расположенные в местах слияния внешней и внутренней ядерной мембран

    В клетках человека каждый ЯПК обладает массой около 120 х 10 6 Да, что в 40 раз больше массы рибосомы, и состоит из множества копий молекул, включающих 30 белков

    ЯПК содержит филаменты, простирающиеся в цитоплазму, и напоминающие корзину структуры, проникающие в ядро

    Ядерный поровой комплекс (ЯПК) ядерной мембраны представляют собой единственные каналы, которые связывают ядро и цитоплазму. В клетках человека ЯПК имеют молекулярную массу около 120 х 106 Да и наружный диаметр порядка 120 нм. Общая масса ЯПК в 40 раз превышает массу эукариотической рибосомы. Комплекс ядерной поры состоит из многих копий примерно 30 разных полипептидов, нуклеопоринов. В противоположность ЯПК, рибосомы содержат по одной копии четырех типов РНК, и около 80 различных полипептидов.

    Ядерный поровой комплекс (ЯПК) представляют собой бочкообразные структуры, проходящие через ядерную оболочку и несколько выступающие за пределы обеих мембран, образуя структуры кольцеобразной формы. Как показано на рисунке ниже, для большинства ЯПК характерна симметрия восьмого порядка. Со стороны ядра и цитоплазмы пора выглядит по-разному. Части ЯПК, выступающие в нуклеоплазму и цитоплазму, называются терминальными структурами.

    С цитоплазматической стороны ЯПК терминальные структуры представляют собой восемь относительно коротких фибрилл, которые распространяются в цитоплазму на расстояние около 100 нм. Со стороны ядра аналогичные фибриллы образуют кольцо. Эта структура называется ядерная корзина или «верша». У некоторых клеток многоклеточных организмов от ядерной корзины вглубь ядра направляются дополнительные фибриллы. Со стороны цитоплазмы и ядра терминальные структуры являются местами контакта транспортируемых молекул на входе и выходе из ЯПК.

    Модели, описывающие строение ядерной поры , были предложены на основании анализа сотен электронных микрофотографий отдельных ЯПК, полученных при высоком разрешении. Для наложения изображений и их анализа использовались математические методы, дающие возможность получить усредненную картину распределения электронной плотности или обобщенную структуру кора ЯПК (этот метод не обеспечивает оптимального разрешения терминальных структур).

    На рисунке ниже представлены модели структуры кора ЯПК клеток дрожжей и Xenopus. Размеры клеток S. cerevisiae и других одноклеточных эукариот составляют около 60 х 106 Да - т. е. вполовину меньше, чем размеры ЯПК многоклеточных организмов. Однако, несмотря на разницу в размерах, их общее строение одинаково. Размер центрального канала поры, а также его транспортные свойства у Metazoa и дрожжей также одинаковы. В настоящее время наилучшие изображения ЯПК получены методом криоэлектронной микроскопии.

    ЯПК характеризуется осью симметрии восьмого порядка, расположенной перпендикулярно оболочке ядра.
    Иногда встречаются поры, обладающие симметрией седьмого или девятого порядка.
    Симметрия восьмого порядка легко видима на увеличенных изображениях отдельных ЯПК (фотографии внизу).
    Усредненная микрофотография в электронном микроскопе, полученная по результатам нескольких сотен отдельных фотографий (внизу справа).

    Как показано на рисунке ниже, при любом расположении ЯПК происходит слияние наружной и внутренней мембран ядра. Мы не знаем, каким образом это происходит, но, скорее всего, слияние является интегральной частью процесса сборки ЯПК в ядерной оболочке. Комплексы закрепляются в оболочке с помощью интегральных мембранных белков, которые являются частью основной структуры. Эти белки проходят в перинуклеарное пространство. ЯПК проникают в ядерную ламину и также скрепляются с ней.

    Обобщенная модель ЯПК , построенная по данным многих исследований, предполагает, что ядерная пора состоит из нескольких кольцевых и напоминающих спицы структур. Эти структуры сложным образом соединены между собой. ЯПК состоят из модульных компонентов. С помощью сканирующего электронного микроскопа можно наблюдать различные структуры, которые подтверждают эту точку зрения. Основываясь на полученных данных, предложена модель, описывающая сборку модульных структур. Однако пока мы не можем проверить, действительно ли они соединены таким образом. Мы также очень мало знаем о процессе сборки ЯПК.

    Фиксация клеток позволяет наблюдать этапы продвижения материалов по каналу ЯПК . При исследовании препаратов в электронном микроскопе часто видно, что полость центрального канала заполнена плотной средой. Относительно состава этой среды существуют различные точки зрения. Согласно одной из них, среда представляет собой часть ЯПК, которая наиболее прочно связывается с карго, транспортируемым через канал. Поэтому для ее обозначения используют термин транспортер или втулка. Альтернативная точка зрения предполагает, что в действительности электронноплотный материал является комплексом карго с рецептором. На основании исследований, проведенных с помощью электронного микроскопа с высоким разрешением, этот материал, по-видимому, характеризуется различными размерами и переменной локализацией в канале ЯПК, что более совместимо с точкой зрения о том, что он состоит из комплексов карго-рецептор.

    В некоторых клетках ЯПК находятся не только в ядерной оболочке, но также в структурах, называемых окончатыми мембранами, которые представляют собой стопки двойных мембран, содержащих ЯПК и расположенных в цитоплазме. Часто ЯПК в слоях окончатых мембран располагаются так, как показано на рисунке ниже. Обычно окончатые мембраны присутствуют в ооцитах беспозвоночных и позвоночных, однако могут наблюдаться также и в других типах клеток. Происхождение и функции их остаются неизвестными.

    Ядерный поровой комплекс (ЯПК ) клеток млекопитающих трудно отделить от ядерной оболочки, поскольку они обычно связаны с ламиной, представляющей собой нерастворимую структуру, и поэтому являются неудобным объектом исследования. Поскольку окончатые мембраны не имеют подстилающей ламины, они представляют собой ценный источник выделения ЯПК для последующих биохимических и цитологических исследований. Вероятно, ЯПК окончатых мембран имеют такое же строение и состав, как и комплексы пор ядерной оболочки.


    ЯПК обладают различными терминальными структурами.
    Как показывают исследования в электронном микроскопе,
    со стороны ядра по форме они напоминают корзину (слева),
    а со стороны цитоплазмы представлены фибриллами (справа).

    Цитоплазматические фибриллы и ядерные корзины ядерных пор,
    видимые в трансмиссионном электронном микроскопе.

    Трехмерные компьютерные модели ЯПК,
    иллюстрирующие распределение средней электронной плотности.
    Представлен вид моделей сбоку, вдоль плоскости ядерной оболочки, и сверху, перпендикулярно оболочке.

    Наружная и внутренняя мембраны ядерной оболочки соединяются в области комплекса ядерной поры. Предполагается, что ЯПК собраны из модульных компонентов.
    Показаны фотографии этих компонентов, сделанные в электронном микроскопе на разных стадиях сборки ЯПК после митоза.
    Окончатые мембраны в ооцитах Xenopus.
    Фотография получена в трансмиссионном электронном микроскопе.