Все о тюнинге авто

Можно ли создать космический лифт. Исследовательская работа "космический лифт". Восприимчивость к опасным вибрациям


Замысел астроинженерного сооружения по выведению грузов на планетарную орбиту или даже за её пределы. Впервые подобную мысль высказал Константин Циолковский в 1895 году , детальную разработку идея получила в трудах Юрия Арцутанова. Гипотетическая конструкция основана на применении троса, протянутого от поверхности планеты к орбитальной станции находящейся на ГСО. Предположительно, такой способ в перспективе может быть на порядки дешевле использования ракет-носителей.
Трос удерживается одним концом на поверхности планеты (Земли), а другим - в неподвижной над планетой точке выше геостационарной орбиты (ГСО) за счёт центробежной силы. По тросу поднимается подъёмник, несущий полезный груз. При подъёме груз будет ускоряться за счёт вращения Земли, что позволит на достаточно большой высоте отправлять его за пределы тяготения Земли.
От троса требуется чрезвычайно большая прочность на разрыв в сочетании с низкой плотностью. Углеродные нанотрубки по теоретическим расчётам представляются подходящим материалом. Если допустить пригодность их для изготовления троса, то создание космического лифта является решаемой инженерной задачей, хотя и требует использования передовых разработок и больших затрат иного рода. Создание лифта оценивается в 7-12 млрд долларов США. НАСА уже финансирует соответствующие разработки американского Института научных исследований, включая разработку подъёмника, способного самостоятельно двигаться по тросу.
Содержание [убрать]
1 Конструкция
1.1 Основание
1.2 Трос
1.2.1 Утолщение троса
1.3 Подъёмник
1.4 Противовес
1.5 Угловой момент, скорость и наклон
1.6 Запуск в космос
2 Строительство
3 Экономика космического лифта
4 Достижения
5 Литература
6 Космический лифт в различных произведениях
7 См. также
8 Примечания
9 Ссылки
9.1 Организации
9.2 Разное
Конструкция

Есть несколько вариантов конструкции. Почти все они включают основание (базу), трос (кабель), подъёмники и противовес.
Основание
Основание космического лифта - это место на поверхности планеты, где прикреплён трос и начинается подъём груза. Оно может быть подвижным, размещённым на океанском судне.
Преимущество подвижного основания - возможность совершения маневров для уклонения от ураганов и бурь. Преимущества стационарной базы - более дешёвые и доступные источники энергии, и возможность уменьшить длину троса. Разница в несколько километров троса сравнительно невелика, но может помочь уменьшить требуемую толщину его средней части и длину части, выходящей за геостационарную орбиту.
Трос
Трос должен быть изготовлен из материала с чрезвычайно высоким отношением предела прочности к удельной плотности. Космический лифт будет экономически оправдан, если можно будет производить в промышленных масштабах за разумную цену трос плотности, сравнимой с графитом, и прочностью около 65–120 гигапаскалей.
Для сравнения, прочность большинства видов стали - около 1 ГПа, и даже у прочнейших её видов - не более 5 ГПа, причём сталь тяжела. У гораздо более лёгкого кевлара прочность в пределах 2,6-4,1 ГПа, а у кварцевого волокна - до 20 ГПа и выше. Теоретическая прочность алмазных волокон может быть немногим выше.
Углеродные нанотрубки должны, согласно теории, иметь растяжимость гораздо выше, чем требуется для космического лифта. Однако технология их получения в промышленных количествах и сплетения их в кабель только начинает разрабатываться. Теоретически их прочность должна быть более 120 ГПа, но на практике самая высокая растяжимость однослойной нанотрубки была 52 ГПа, а в среднем они ломались в диапазоне 30–50 ГПа. Самая прочная нить, сплетённая из нанотрубок, будет менее прочной, чем ее компоненты. Исследования по улучшению чистоты материала трубок и по созданию разных их видов продолжаются.
В большинстве проектов космического лифта применяются однослойные нанотрубки. У многослойных выше прочность, но они тяжелее, и их отношение прочности к плотности ниже. Возможный вариант - использовать соединение однослойных нанотрубок под высоким давлением. При этом хотя и теряется прочность из-за замещения sp²-связи (графит, нанотрубки) на sp³-связь (алмаз), они будут лучше удерживаться в одном волокне силами Ван-дер-Ваальса и дадут возможность производить волокна произвольной длины.[источник не указан 810 дней]

Дефекты кристаллической решётки снижают прочность нанотрубок
В эксперименте учёных из Университета Южной Калифорнии (США) однослойные углеродные нанотрубки продемонстрировали удельную прочность, в 117 раз превышающую показатели стали и в 30 - кевлар. Удалось выйти на показатель в 98,9 ГПа, максимальное значение длины нанотрубки составило 195 мкм.
Технология плетения таких волокон ещё только зарождается.
По заявлениям некоторых учёных, даже углеродные нанотрубки никогда не будут достаточно прочны для изготовления троса космического лифта.
Эксперименты ученых из Технологического университета Сиднея позволили создать графеновую бумагу. Испытания образцов внушают оптимизм: плотность материала в пять-шесть раз ниже, чем у стали, при этом прочность на разрыв в десять раз выше, чем у углеродистой стали. При этом графен является хорошим проводником электрического тока, что позволяет использовать его для передачи мощности подъемнику, в качестве контактной шины.
Утолщение троса

Проверить информацию.

Космический лифт должен выдерживать по крайней мере свой вес, весьма немалый из-за длины троса. Утолщение с одной стороны повышает прочность троса, с другой - прибавляет его вес, а следовательно и требуемую прочность. Нагрузка на него будет различаться в разных местах: в одних случаях участок троса должен выдерживать вес сегментов, находящихся ниже, в других - выдерживать центробежную силу, удерживающую верхние части троса на орбите. Для удовлетворения этому условию и для достижения оптимальности троса в каждой его точке, толщина его будет непостоянной.
Можно показать, что с учётом гравитации Земли и центробежной силы (но не учитывая меньшее влияние Луны и Солнца), сечение троса в зависимости от высоты будет описываться следующей формулой:

Здесь A ® - площадь сечения троса как функция расстояния r от центра Земли.
В формуле используются следующие константы:
A0 - площадь сечения троса на уровне поверхности Земли.
ρ - плотность материала троса.
s - предел прочности материала троса.
ω - круговая частота вращения Земли вокруг своей оси, 7,292×10−5 радиан в секунду.
r0 - расстояние между центром Земли и основанием троса. Оно приблизительно равно радиусу Земли, 6 378 км.
g0 - ускорение свободного падения у основания троса, 9,780 м/с².
Это уравнение описывает трос, толщина которого сначала экспоненциально увеличивается, потом её рост замедляется на высоте нескольких земных радиусов, а потом она становится постоянной, достигнув в конце концов геостационарной орбиты. После этого толщина снова начинает уменьшаться.
Таким образом, отношение площадей сечений троса у основания и на ГСО (r = 42 164 км) есть:
Подставив сюда плотность и прочность стали и диаметр троса на уровне Земли в 1 см, мы получим диаметр на уровне ГСО в несколько сот километров, что означает, что сталь и прочие привычные нам материалы непригодны для строительства лифта.
Отсюда следует, что есть четыре способа добиться более разумной толщины троса на уровне ГСО:
Использовать менее плотный материал. Поскольку плотность большинства твёрдых тел лежит в относительно небольшом диапазоне от 1000 до 5000 кг/м³, здесь вряд ли получится чего-то добиться.
Использовать более прочный материал. В этом направлении в основном и идут исследования. Углеродные нанотрубки в десятки раз прочнее лучшей стали, и они позволят значительно уменьшить толщину троса на уровне ГСО.
Поднять повыше основание троса. Из-за наличия экспоненты в уравнении даже небольшое поднятие основания позволит сильно понизить толщину троса. Предлагаются башни высотой до 100 км , которые, кроме экономии на тросе, позволят избежать влияния атмосферных процессов.
Сделать основание троса как можно тоньше. Он все равно должен быть достаточно толстым, чтобы выдержать подъёмник с грузом, так что минимальная толщина у основания также зависит от прочности материала. Тросу из углеродных нанотрубок достаточно иметь у основания толщину всего в один миллиметр.
Ещё способ - сделать основание лифта подвижным. Движение даже со скоростью 100 м/с уже даст выигрыш в круговой скорости на 20% и сократит длину кабеля на 20-25%, что облегчит его на 50 и более процентов. Если же «заякорить» кабель на сверхзвуковом[источник не указан 664 дня] самолёте, или поезде, то выигрыш в массе кабеля уже будет измеряться не процентами, а десятками раз (но не учтены потери на сопротивление воздуха).
Подъёмник

Проверить информацию.
Необходимо проверить точность фактов и достоверность сведений, изложенных в этой статье.
На странице обсуждения должны быть пояснения.


Стиль этого раздела неэнциклопедичен или нарушает нормы русского языка.
Следует исправить раздел согласно стилистическим правилам Википедии.



Концептуальный рисунок космического лифта, поднимающегося через облака
Космический лифт не может работать как обычный лифт (с движущимися тросами), поскольку толщина его троса непостоянна. Большинство проектов предлагает использовать подъёмник, забирающийся вверх по неподвижному тросу, хотя предлагались также варианты использования небольших сегментированных подвижных тросов, протянутых вдоль основного троса.
Предлагаются различные способы конструкции подъёмников. На плоских тросах можно использовать пары роликов, держащихся за счёт силы трения. Другие варианты - движущиеся спицы с крючками на пластинах, ролики с выдвижными крючками, магнитная левитация (маловероятна, поскольку на тросе придётся закреплять громоздкие пути) и пр.[источник не указан 661 день]
Серьёзная проблема конструкции подъёмника - источник энергии[источник не указан 661 день]. Плотность хранения энергии вряд ли когда-либо будет достаточно велика, чтобы подъёмнику хватило энергии на подъем по всему кабелю. Возможные внешние источники энергии - лазерные или микроволновые лучи. Другие варианты - использование энергии торможения подъёмников, движущихся вниз; разница в температурах тропосферы; ионосферный разряд и т.д. Основной вариант[источник не указан 661 день] (лучи энергии) обладает серьёзными проблемами, связанными с эффективностью и диссипацией тепла на обоих концах, хотя, если оптимистично относиться к будущим технологическим достижениям, он реализуем.
Подъёмники должны следовать на оптимальной дистанции друг за другом, чтобы минимизировать нагрузку на трос и его осцилляции и максимизировать пропускную способность. Самая ненадёжная область троса - вблизи его основания; там не должно находиться более одного подъёмника[источник не указан 661 день]. Подъёмники, движущиеся только вверх, позволят увеличить пропускную способность, но не дадут использовать энергию торможения при движении вниз, а также не смогут возвращать людей на землю. Кроме того, компоненты таких подъёмников должны использоваться на орбите для других целей. В любом случае, маленькие подъёмники лучше больших, потому что расписание их движения будет более гибким, но они накладывают больше технологических ограничений.
Кроме того, сама нить лифта будет постоянно испытывать на себе действие как силы Кориолиса, так и атмосферных потоков. Мало того, поскольку «подъёмник» должен быть расположен выше высоты геостационарной орбиты, он будет подвержен постоянным нагрузкам, в том числе пиковым, например, рывковым[источник не указан 579 дней].
Тем не менее, если вышеизложенные препятствия могут быть каким-либо образом устранены, то космический лифт может быть реализован. Однако такой проект будет крайне дорогостоящим, но в будущем, возможно, будет конкурировать с одноразовыми и многоразовыми космическим аппаратами[источник не указан 579 дней].
Противовес

В этой статье не хватает ссылок на источники информации.
Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка стоит на статье с 13 мая 2011.
Противовес может быть создан двумя способами - путём привязки тяжёлого объекта (например, астероида) за геостационарной орбитой или продолжения самого троса на значительное расстояние за геостационарную орбиту. Второй вариант пользуется большей популярностью в последнее время, поскольку его легче осуществить, а кроме того, с конца удлинённого троса проще запускать грузы на другие планеты, поскольку он обладает значительной скоростью относительно Земли.
Угловой момент, скорость и наклон

Проверить информацию.
Необходимо проверить точность фактов и достоверность сведений, изложенных в этой статье.
На странице обсуждения должны быть пояснения.

Эта статья или раздел нуждается в переработке.
Пожалуйста, улучшите статью в соответствии с правилами написания статей.

В этой статье не хватает ссылок на источники информации.
Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка стоит на статье с 13 мая 2011.

При движении подъёмника вверх лифт наклоняется на 1 градус, поскольку верхняя часть лифта движется вокруг Земли быстрее, чем нижняя (эффект Кориолиса). Масштаб не сохранен
Горизонтальная скорость каждого участка троса растет с высотой пропорционально расстоянию до центра Земли, достигая на геостационарной орбите первой космической скорости. Поэтому при подъёме груза ему нужно получить дополнительный угловой момент (горизонтальную скорость).
Угловой момент приобретается за счёт вращения Земли. Сначала подъёмник движется чуть медленнее троса (эффект Кориолиса), тем самым «замедляя» трос и слегка отклоняя его к западу. При скорости подъёма 200 км/ч трос будет наклоняться на 1 градус. Горизонтальная компонента натяжения в невертикальном тросе тянет груз в сторону, ускоряя его в восточном направлении (см. диаграмму) - за счёт этого лифт приобретает дополнительную скорость. По третьему закону Ньютона трос замедляет Землю на небольшую величину.
В то же время влияние центробежной силы заставляет трос вернуться в энергетически выгодное вертикальное положение, так что он будет находиться в состоянии устойчивого равновесия. Если центр тяжести лифта будет всегда выше геостационарной орбиты независимо от скорости подъёмников, он не упадет.
К моменту достижения грузом ГСО его угловой момент (горизонтальная скорость) достаточна для вывода груза на орбиту.
При спуске груза будет происходить обратный процесс, наклоняя трос на восток.
Запуск в космос
На конце троса высотой в 144 000 км тангенциальная составляющая скорости составит 10,93 км/с, что более чем достаточно, чтобы покинуть гравитационное поле Земли и запустить корабли к Сатурну. Если объекту позволить свободно скользить по верхней части троса, его скорости хватит, чтобы покинуть Солнечную систему. Это произойдет за счёт перехода суммарного углового момента троса (и Земли) в скорость запущенного объекта.
Для достижения ещё больших скоростей можно удлинить трос или ускорить груз за счёт электромагнетизма.
Строительство

Строительство ведётся с геостационарной станции. Это единственное место, где может причалить космический аппарат. Один конец опускается к поверхности Земли,натягиваясь силой притяжения. Другой, для уравновешивания,- в противоположную сторону, натягиваясь центробежной силой. Это означает, что все материалы для строительства должны быть подняты на геостационарную орбиту традиционным способом, независимо от места назначения груза. То есть, стоимость подъёма всего космического лифта на геостационарную орбиту - минимальная цена проекта.
Экономика космического лифта

Предположительно, космический лифт позволит намного снизить затраты на посылку грузов в космос. Строительство космических лифтов обойдётся дорого, но их операционные расходы невелики, поэтому их разумнее всего использовать в течение длительного времени для очень больших объёмов груза. В настоящее время рынок запуска грузов может быть недостаточно велик, чтобы оправдать строительство лифта, но резкое уменьшение цены должно привести к большему разнообразию грузов. Таким же образом оправдывает себя прочая транспортная инфраструктура - шоссе и железные дороги.
Стоимость разработки лифта сравнима со стоимостью разработки космического челнока[источник не указан 810 дней]. Пока ещё нет ответа на вопрос, вернет ли космический лифт вложенные в него деньги или лучше будет вложить их в дальнейшее развитие ракетной техники.
Не следует забывать о лимите количества спутников-ретрансляторов на геостационарной орбите: в настоящее время международными соглашениями допускается 360 спутников - один ретранслятор на угловой градус, во избежание помех при трансляции в полосе Ku-частот. Для C-частот число спутников ограничено 180.
Таким образом, космический лифт минимально пригоден для массовых запусков на геостационарную орбиту[источник не указан 554 дня] и максимально пригоден для освоения внешнего космоса и Луны в частности.
Данное обстоятельство объясняет настоящую коммерческую несостоятельность проекта, так как основные финансовые затраты негосударственных организаций ориентированы на спутники-ретрансляторы, занимающие либо геостационарную орбиту (телевидение, связь), либо более низкие орбиты (системы глобального позиционирования, наблюдения за природными ресурсами и т.п.).
Однако лифт может быть гибридным проектом и помимо функции доставки груза на орбиту оставаться базой для других научно-исследовательских и коммерческих программ, не связанных с транспортом.
Достижения

В США с 2005 года проводятся ежегодные соревнования Space Elevator Games, организованные фондом Spaceward при поддержке NASA. В этих состязаниях существуют две номинации: «лучший трос» и «лучший робот (подъёмник)».
В конкурсе подъёмников робот должен преодолеть установленное расстояние, поднимаясь по вертикальному тросу со скоростью не ниже установленной правилами (в соревнованиях 2007 года нормативы были следующими: длина троса - 100 м, минимальная скорость - 2 м/с). Лучший результат 2007 года - преодолённое расстояние в 100 м со средней скоростью 1,8 м/с.
Общий призовой фонд соревнований Space Elevator Games в 2009 году составлял 4 миллиона долларов.
В конкурсе на прочность троса участникам необходимо предоставить двухметровое кольцо из сверхпрочного материала массой не более 2 грамм, которое специальная установка проверяет на разрыв. Для победы в конкурсе прочность троса должна минимум на 50% превосходить по этому показателю образец, уже имеющийся в распоряжении у NASA. Пока лучший результат принадлежит тросу, выдержавшему нагрузку вплоть до 0,72 тонны.
В этих соревнованиях не принимает участие компания Liftport Group, получившая известность благодаря своим заявлениям запустить космический лифт в 2018 году (позднее этот срок был перенесён на 2031 год). Liftport проводит собственные эксперименты, так в 2006 году роботизированный подъёмник взбирался по прочному канату, натянутому с помощью воздушных шаров. Из полутора километров подъёмнику удалось пройти путь лишь в 460 метров. Следующим этапом компания планирует провести испытания на тросе высотой 3 км.
На соревнованиях Space Elevator Games с 4 по 6 ноября 2009 года прошло состязание, организованное Spaceward Foundation и NASA, в Южной Калифорнии, на территории центра Драйдена (Dryden Flight Research Center), в границах знаменитой авиабазы Эдвардс. Зачётная длина троса составила 900 метров, трос был поднят при помощи вертолета. Лидерство заняла компания LaserMotive представившая подъемник со скоростью 3,95 м/с, что очень близко к требуемой скорости. Всю длину троса лифт преодолел за 3 минуты 49 секунд, на себе лифт нес полезную нагрузку 0,4кг..
В августе 2010 года компания LaserMotive провела демонстрацию своего последнего изобретения на AUVSI Unmanned Systems Conference в Денвере, штат Колорадо. Новый вид лазера поможет более экономично передавать энергию на большие расстояния, лазер потребляет всего несколько ватт.
Литература

Юрий Арцутанов «В космос - на электровозе», газета «Комсомольская правда» от 31 июля 1960 года.
Александр Болонкин «Non-Rocket Space Launch and Flight», Elsevier, 2006, 488 pgs. http://www.scribd.com/doc/24056182
Космический лифт в различных произведениях

Одно из знаменитых произведений Артура Кларка, Фонтаны рая, основано на идее космического лифта. Кроме того, космический лифт фигурирует и в заключительной части его знаменитой тетралогии Космическая Одиссея (3001: Последняя одиссея).
В Battle Angel фигурирует циклопический космический лифт, на одном конце которого находится Небесный Город Салем (для граждан) вместе с нижним городом (для не-граждан), а на другом конце находится космический город Йеру. Аналогичная конструкция находится и на другой стороне Земли.
В сериале «Звёздный путь: Вояджер» в эпизоде 3×19 «Rise» (Подъем) космический лифт помогает экипажу вырваться с планеты с опасной атмосферой.
В игре Civilization IV есть космический лифт. Там он - одно из поздних «Больших чудес».
В фантастическом романе Тимоти Зана «Шелкопряд» («Spinneret», 1985) упоминается планета способная производить супер волокно. Одна из рас заинтересовавшаяся планетой хотела получить это волокно именно для строительства космического лифта.
В дилогии Сергея Лукьяненко «Звёзды - холодные игрушки» одна из внеземных цивилизаций в процессе межзвёздной торговли поставила на Землю сверхпрочные нити, которые могли бы быть использованы для строительства космического лифта. Но внеземные цивилизации настаивали исключительно на использовании их по прямому назначению - для помощи при проведении родов.
В аниме Mobile Suit Gundam 00 присутствуют три космических лифта, на них так же крепится кольцо из солнечных батарей, что позволяет использовать космический лифт ещё и для добычи электроэнергии.
В аниме Z.O.E. Dolores присутствует космический лифт, а также показано что может быть в случае теракта.
В фантастическом романе Дж. Скальци «Обреченные на победу» (англ. Scalzi, John. Old Man’s War) системы космических лифтов активно используются на Земле, многочисленных земных колониях и некоторых планетах других высокоразвитых разумных рас для сообщения с причалами межзвёздных кораблей.
В фантастическом романе Александра Громова «Завтра наступит вечность» сюжет построен вокруг факта существования космического лифта. Существует два устройства - источник и приемник, которые посредством «энергетического луча» способны поднимать «кабину» лифта на орбиту.
В фантастическом романе Аластера Рейнольдса «Город Бездны» дается подробное описание строения и функционирования космического лифта, описан процесс его разрушения (в результате теракта).
В фантастическом романе Терри Пратчетта «Страта» присутствует «Линия» - сверхдлинная искусственная молекула, используемая в качестве космического лифта.
Упоминается в песне группы Звуки Му «Лифт на небо»
Космический лифт упоминается в аниме-сериале Кровь Триединства, в нём противовесом служит космический корабль «Arc».
В самом начале игры Sonic Colors, можно видеть, как Соник и Теилз поднимаются на космическом лифте, чтобы попасть в Парк Доктора Эггмана
См. также

Космическая пушка
Пусковая петля
Космический фонтан
Примечания

http://galspace.spb.ru/nature.file/lift.html Космический лифт и нанотехнологии
В космос - на лифте! // KP.RU
Орбиты космического лифта Общественно-политический и научно-популярный журнал «Российский космос» № 11, 2008
Углеродные нанотрубки на два порядка прочнее стали
MEMBRANA | Мировые новости | Нанотрубки не выдержат космический лифт
Новая графеновая бумага оказалась прочнее стали
Лемешко Андрей Викторович. Космический лифт Лемешко А.В./ Space lift Lemeshko A.V
en:Satellite television#Technology
Лифт на небо поставил рекорды с прицелом на будущее
Разработан лазер, который сможет питать космические лифты
LaserMotive to Demonstrate Laser-Powered Helicopter at the AUVSI’s Unmanned Systems North America 2010

Идея создания космического лифта упоминалась в научно-фантастических произведениях британского писателя Артура Чарльза Кларка еще в 1979 году. Он писал в своих романах, что абсолютно уверен в том, что однажды такой лифт будет построен.

Но первым человеком, кому пришла в голову такая странная идея, был русский инженер и основоположник российской космонавтики Константин Эдуардович Циолковский. Вдохновленный постройкой Эйфелевой башни, он предложил построить еще более высокую башню несколько тысяч километров в высоту. Циолковский предлагал заселить космическое пространство с использованием орбитальных станций, выдвинул идеи космического лифта и поездов на воздушной подушке.


Космический лифт – это звучит фантастично. Но люди в ХIХ веке также не смогли бы поверить в появление таких технических достижений, как самолет или космический корабль. Строительная корпорация «Обаяси» в Японии уже занимается разработкой технической документации для подготовки строительства космического лифта. Стоимость проекта составляет 12 млрд долларов. Строительство объекта будет завершено в 2050 году.


Потенциальная польза от применения космических лифтов достаточно высока. Все дело в том, что преодоление земного притяжения с помощью реактивной тяги нецелесообразно. Например, чтобы запустить «Шаттл» всего один раз, требуется потратить 500 млн долларов, поэтому запуски традиционных ракет-носителей станут экономически невыгодными.


Космический лифт состоит из трех основных частей: основание, трос и противовес.

Массивная платформа в океане, представляющая основание лифта, будет удерживать один конец троса из углеродистого волокна, на конце которого расположится противовес – тяжелый объект, который будет играть роль спутника, вращающегося вслед за нашей планетой и удерживаемый на орбите за счет центробежной силы. Именно по этому тросу, протянутому в небо на высоту до ста тысяч километров, и будут подниматься в космос грузы.

Чтобы доставить килограмм груза в космос с помощью ракеты, уходит до 15 тысяч долларов. Японцы подсчитали, что для доставки на орбиту груза с таким же весом они потратят… 100 долларов


Космический лифт – это тщательно проработанная идея. Например, подсчитано, что трос нельзя делать из стали. Он просто порвется под тяжестью своего веса. Материал должен быть в 90 раз прочнее и в 10 раз легче стали.

В качестве тросов инженеры собирались использовать углеродные нанотрубки, но выяснилось, что из такого материала невозможно сплести тросы большой длины.

Совсем недавно появилось изобретение, которое может, наконец, сделать фантазии о космическом лифте реальностью. Команда исследователей во главе с Джоном Баддингом из университета Пенсильвании создала ультратонкие нанонити из микроскопических алмазов, которые по прочности существенно превосходят нанотрубки и полимерные волокна.


Токийское небесное дерево — телевизионная башня в районе Сумида, самая высокая среди телебашен мира.

Руководитель научно-исследовательского подразделения компании «Обаяси» Йоджи Ишикава считает, что ноу-хау университета Пенсильвании действительно способно приблизить человечество к космосу. Он говорит, что новый материал, разумеется, должен пройти ряд испытаний на прочность, но, похоже, это именно то, что так долго искали он и его коллеги.


Компания «Обаяси» уже построила скоростные лифты для телевизионной башни высотой около 635 метров

НАСА сейчас также вплотную занимается секретной разработкой космолифта. В перспективе появится возможность доставки на орбиту частей гигантских межпланетных кораблей и их сборки в космосе. Такой проект можно реализовать только при помощи космолифта.

Но самое главное – государство, который первым построит космический лифт, на долгие столетия монополизирует сферу космических грузоперевозок.


Иллюстрация к научно – фантастическому роману Кима Стэнли Робинсона «Зеленый Марс» с изображением
космического лифта, установленного на Марсе.

Многим известна библейская история о том, как люди вознамерились стать подобными Богу и решили воздвигнуть башню высотой до небес. Господь, разгневавшись, сделал так, что все люди начали говорить на разных языках, и стройка остановилась.

Правда это или нет, сказать сложно, но спустя тысячи лет человечество снова задумалось над возможностью возведения супербашни. Ведь если удастся соорудить конструкцию высотой в десятки тысяч километров, то можно удешевить доставку грузов в космос почти в тысячу раз! Космос раз и навсегда перестанет быть чем-то далеким и недостижимым.

Дорогой космос

Впервые концепцию космического лифта рассмотрел великий русский ученый Константин Циолковский. Он предполагал, что если построить башню высотой 40 000 километров, то центробежная сила нашей планеты будет держать всю конструкцию, не позволяя ей упасть.

С первого взгляда, от этой идеи за версту пахнет маниловщиной, но давайте рассуждать логически. Сегодня большую часть веса ракет составляет топливо, которое тратится на преодоление земной гравитации. Разумеется, это сказывается и на цене запуска. Стоимость доставки одного килограмма полезного груза на околоземную орбиту составляет около 20 000 долларов.

Так что когда родные передают космонавтам, находящимся на МКС, варенье, можете не сомневаться: это самое дорогое лакомство на свете. Даже английская королева не может себе такого позволить!

Запуск одного шаттла обходился NASA в сумму от 500 до 700 миллионов долларов. Ввиду проблем в американской экономике руководство NASA было вынуждено закрыть программу космических челноков и отдать функцию по доставке грузов на МКС на аутсорсинг частным компаниям.

К проблемам экономическим добавляются еще и политические. Из-за разногласий по украинскому вопросу страны Запада ввели ряд санкций и ограничений против России. К сожалению, они коснулись и сотрудничества в космонавтике. NASA получило от правительства США приказ о заморозке всех совместных проектов, за исключением МКС. В ответ вице-премьер-министр Дмитрий Рогозин заявил, что Россия не заинтересована в участии в проекте МКС после 2020 года и намерена переключиться на осуществление других целей и задач, таких как основание на Луне постоянной научной базы и пилотируемый полет к Марсу.

Скорее всего, Россия будет заниматься этим вместе с Китаем, Индией и, возможно, Бразилией. Следует отметить: Россия и так собиралась завершить работу в проекте, а западные санкции просто ускорили этот процесс.

Несмотря на столь грандиозные планы, все может остаться на бумаге, если не будет разработан более эффективный и дешевый способ доставки грузов за пределы земной атмосферы. На постройку все той же МКС было затрачено в общей сложности свыше 100 миллиардов долларов! Сколько «зеленых» потребуется для создания станции на Луне, даже страшно представить.

Космический лифт мог бы стать идеальным решением проблемы. Когда лифт заработает, стоимость доставки может упасть до двух долларов за килограмм. Но прежде придется основательно поломать голову над тем, как его построить.

Запас прочности

В 1959 году ленинградский инженер Юрий Николаевич Арцутанов разработал первый рабочий вариант космического лифта. Поскольку строить лифт снизу вверх невозможно из-за гравитации нашей планеты, он предложил сделать наоборот - строить сверху вниз. Для этого следовало запустить специальный спутник на геостационарную орбиту (около 36 000 километров), где он должен был занять позицию над определенной точкой на экваторе Земли. Затем начать на спутнике сборку тросов и постепенно опускать их по направлению к поверхности планеты. Сам спутник также играл роль противовеса, постоянно поддерживая тросы в натянутом состоянии.

Широкая общественность смогла подробно познакомиться с этой идеей, когда в 1960 году «Комсомольская правда» опубликовала интервью с Арцутановым. Интервью опубликовали и западные СМИ, после чего уже весь мир подвергся «лифтовой лихорадке». Особенно усердствовали писатели-фантасты, рисовавшие радужные картины будущего, непременным атрибутом которых являлся космический лифт.

Все специалисты, изучающие возможность создания лифта, сходятся во мнении, что главным препятствием к реализации этого замысла является отсутствие достаточно прочного материала для тросов. По расчетам, этот гипотетический материал должен выдерживать напряжение 120 гигапаскалей, т.е. свыше 100 000 килограммов на квадратный метр!

Прочность стали - приблизительно 2 гигапаскаля, у особо прочных вариантов - максимум 5 гигапаскалей, у кварцевого волокна - немногим выше 20. Этого просто чудовищно мало. Встает извечный вопрос: что делать? Развивать нанотехнологии. Самым перспективным кандидатом на роль троса для лифта могут стать углеродные нанотрубки. Согласно расчетам, их прочность должна быть гораздо выше минимальных 120 гигапаскалей.

На данный момент наиболее прочный образец смог выдержать напряжение в 52 гигапаскаля, но в большинстве других случаев они разрывались в диапазоне от 30 до 50 гигапаскалей. В ходе продолжительных исследований и экспериментов специалистам из Университета Южной Калифорнии удалось добиться неслыханного результата: их трубка сумела выдержать напряжение в 98,9 гигапаскаля!

К сожалению, это был единичный успех, к тому же с углеродными нано-трубками есть еще одна существенная проблема. Николас Пуньо, ученый из Туринского политехнического университета, пришел к неутешительному выводу. Оказывается, даже из-за смещения одного атома в структуре углеродных трубок прочность определенного участка может резко снизиться на 30%. И это все при том, что самый длинный полученный образец нанотрубки пока составляет всего два сантиметра. А если принять во внимание тот факт, что длина троса должна составлять почти 40 ООО километров, задача кажется просто невыполнимой.

Мусор и бури

Другая весьма серьезная проблема связана с космическим мусором. Когда человечество обосновалось на околоземной орбите, оно принялось за одно из своих самых любимых занятий - засорение окружающего пространства продуктами своей жизнедеятельности. В самом начале мы как-то не особо беспокоились по этому поводу. «Ведь космос бесконечен! - рассуждали мы. - Выбросишь бумажку, а она отправится дальше, бороздить просторы Вселенной!»

Тут-то мы и дали маху. Весь мусор и остатки летательных аппаратов обречены навечно наматывать круги вокруг Земли, захваченные ее мощным гравитационным полем. Не нужно быть инженером, чтобы догадаться, что произойдет, если один из таких мусорных «кусочков» столкнется с тросом. Поэтому тысячи исследователей со всего мира ломают свои умные головы над вопросом ликвидации околоземной свалки.

Также не совсем ясна ситуация с основанием лифта на поверхности планеты. Вначале предполагалось создать стационарное основание на экваторе для обеспечения синхронности с геостационарным спутником. Однако тогда не избежать пагубного воздействия на лифт ураганных ветров и прочих природных катаклизмов.

Потом появилась идея закрепить основание на плавучей платформе, которая могла бы совершать маневры и «обходить» бури стороной. Но в таком случае операторы на орбите и платформе будут вынуждены выполнять все передвижения с хирургической точностью и абсолютной синхронностью, иначе вся конструкции полетит в тартарары.

Не вешать нос!

Несмотря на все трудности и препятствия, лежащие на нашем тернистом пути к звездам, мы не должны вешать нос и забрасывать этот, вне всяких сомнений, уникальный проект в долгий ящик. Космический лифт - это не роскошь, а жизненно необходимая вещь.

Без него колонизация ближнего космоса станет занятием в высшей степени трудоемким, дорогостоящим и может растянуться на долгие годы. Есть, конечно, предложения разрабатывать антигравитационные технологии, но это уж слишком далекая перспектива, а лифт нужен в ближайшие 20-30 лет.

Лифт необходим не только для поднятия и спуска грузов, но и в качестве «мега-пращи». С его помощью можно запускать космические корабли в межпланетное пространство без затрат огромных объемов столь драгоценного топлива, которое в противном случае может быть пущено на разгон судна. Особый интерес вызывает идея использования лифта для очистки Земли от опасных отходов.

Допустим, отработанное ядерное топливо с АЭС можно помещать в герметичные капсулы, а затем прямой наводкой отправлять в сторону Солнца, для которого сжечь такую козявку - раз плюнуть.

Но, как ни странно, реализация такой затеи - вопрос, скорее, не экономики или науки, а политики. Нужно посмотреть правде в глаза - ни одна страна в мире не сможет самостоятельно осилить столь грандиозный проект. Без международного сотрудничества никак не обойтись.

В первую очередь, важно участие США, Евросоюза, Китая, Японии, Индии, Бразилии и, разумеется, России. Так что, как ни крути, придется сесть за стол переговоров и выкурить трубку мира. Поэтому, ребята, давайте жить дружно, и все у нас получится!

Адилет УРАИМОВ

Несмотря на кризис и войну санкций в цивилизованных экономически развитых странах наблюдается большой интерес к космонавтике. Этому способствуют успехи в развитие ракетостроение и в изучении с помощью космических аппаратов околоземного пространства, планет Солнечной системы и ее периферии. Все новые и новые государства включаются в космическую гонку. Китай и Индия громко заявляют о своих амбициях в деле освоения Вселенной. Уходит в прошлое монополия государственных структур России, США и Европы на полеты за пределы земной атмосферы. Все больший интерес к транспортировке на космическую орбиту людей и грузов проявляет бизнес. Появились фирмы, которые возглавляют энтузиасты, влюбленные в космос. Они занимаются разработкой, как новых ракетоносителей, так и новых технологий, которые позволят сделать скачок в освоении Вселенной. Всерьез рассматриваются идеи, которые еще вчера считались неосуществимыми. И то, что считалось плодом, воспаленного воображения писателей-фантастов, теперь является одним из возможных проектов, подлежащих реализации в ближайшем будущем.

Одним из таких проектов может стать космический лифт.

Насколько это реально? На этот вопрос попытался ответить журналист ВВС Ник Флеминг в своей статье «Лифт на орбите: научная фантастика или вопрос времени?», которая выносится на внимание интересующихся космосом.


Лифт на орбиту: научная фантастика или вопрос времени?

Благодаря космическим лифтам, способным доставлять людей и грузы с поверхности Земли на орбиту, человечество смогло бы отказаться от использования экологически вредных ракет. Но создать подобное устройство непросто, как выяснил корреспондент BBC Future .

Когда речь заходит о прогнозах по поводу развития новых технологий, многие считают авторитетом миллионера Элона Маска - одного из лидеров сектора негосударственных научно-исследовательских работ, которому пришла в голову идея "Гиперпетли" - проекта высокоскоростного трубопроводного пассажирского сообщения между Лос-Анджелесом и Сан-Франциско (время в пути займет всего 35 минут). Но есть проекты, которые даже Маск считает практически не осуществимыми. Например, проект космического лифта.

"Это слишком технически сложная задача. Вряд ли космический лифт можно создать в реальности", - заявил Маск на конференции в Массачусетском технологическом институте прошлой осенью. По его мнению, проще соорудить мост между Лос-Анджелесом и Токио, чем построить лифт на орбиту.

Идея отправлять людей и грузы в космос внутри капсул, скользящих вверх вдоль гигантского троса, который удерживается на месте благодаря вращению Земли, не нова. Подобные описания можно встретить в работах таких писателей-фантастов, как Артур Кларк. Однако осуществимой на практике эту концепцию до сих пор не считали. Может быть, уверенность в том, что нам по силам решить эту чрезвычайно сложную техническую задачу, - на самом деле лишь самообман?

Энтузиасты космического лифта считают, что построить его вполне возможно. По их мнению, ракеты, работающие на токсичном топливе, представляют собой устаревший, опасный для человека и природы и чрезмерно дорогостоящий вид космического транспорта. Предлагаемая альтернатива по сути является железнодорожной веткой, проложенной на орбиту - суперпрочный трос, один конец которого закреплен на поверхности Земли, а другой - к противовесу, находящемуся на геосинхронной орбите и потому постоянно висящему над одной точкой земной поверхности. В качестве лифтовых кабинок использовались бы электрические аппараты, движущиеся вверх и вниз вдоль троса. Благодаря космическим лифтам стоимость отправки грузов в космос удалось бы снизить до 500 долларов за килограмм - согласно недавнему отчету Международной академии астронавтики (IAA), сейчас эта цифра составляет приблизительно 20000 долларов за килограмм.

Энтузиасты космических лифтов указывают на вредность технологий запуска ракет на орбиту

"Данная технология открывает феноменальные возможности, она обеспечит человечеству доступ к Солнечной системе, - говорит Питер Суон, президент Международного консорциума по созданию космического лифта ISEC и соавтор отчета IAA. - Я думаю, что первые лифты будут работать в автоматическом режиме, а спустя 10-15 лет в нашем распоряжении уже будет от шести до восьми таких устройств, достаточно безопасных, чтобы транспортировать людей".

Истоки идеи

Сложность в том, что высота подобного сооружения должна составлять до 100 000 км - это больше, чем два земных экватора. Соответственно, конструкция должна быть достаточно прочной, чтобы выдержать собственный вес. На Земле просто нет материала с необходимыми прочностными характеристиками.

Но некоторые ученые думают, что эту проблему можно будет решить уже в текущем столетии. Крупная японская строительная компания объявила о том, что собирается соорудить космический лифт к 2050 г. А американские исследователи недавно создали новый алмазоподобный материал на основе нанонитей из сжатого бензола, расчетная прочность которого может сделать космический лифт реальностью еще при жизни многих из нас.

Впервые концепция космического лифта была рассмотрена в 1895 г. Константином Циолковским. Российский ученый, вдохновленный примером недавно построенной Эйфелевой башни в Париже, занялся исследованием физических аспектов строительства гигантской башни, при помощи которой можно было бы доставлять космические корабли на орбиту без использования ракет. Позднее, в 1979 г., эту тему упомянул писатель-фантаст Артур Кларк в романе "Фонтаны рая" - его главный герой строит космический лифт, схожий по конструкции с обсуждаемыми сейчас проектами.

Вопрос в том, как воплотить идею в жизнь. “Мне нравится дерзость концепции космического лифта, - говорит Кевин Фонг, основатель Центра высотной, космической и экстремальной медицины при Университетском колледже Лондона. - Я могу понять, почему она кажется людям такой привлекательной: возможность добираться до низких орбит Земли недорого и безопасно открывает для нас всю внутреннюю область Солнечной системы".

Проблемы безопасности

Однако построить космический лифт будет непросто. "Начать с того, что трос необходимо изготовить из суперпрочного, но гибкого материала, обладающего необходимыми весовыми и плотностными характеристиками, чтобы поддерживать вес движущихся по нему аппаратов, и одновременно способного выдерживать постоянные поперечные воздействия. Сейчас такого материала просто не существует, - говорит Фонг. - Кроме того, строительство такого лифта потребует самого интенсивного использования космических кораблей и самого большого количества выходов в открытый космос за всю историю человечества".

По его словам, нельзя сбрасывать со счетов и проблемы безопасности: "Даже если нам удастся преодолеть огромные технические сложности, связанные с постройкой лифта, получившаяся конструкция будет представлять собой гигантскую натянутую струну, сводящую космические аппараты с орбит и постоянно подвергающуюся бомбардировке космическим мусором".

Смогут ли когда-нибудь туристы воспользоваться лифтом, чтобы отправиться в космос?

За последние 12 лет в мире опубликованы три подробных проекта космического лифта. Первый описан Брэдом Эдвардсом и Эриком Уэстлингом в книге "Космические лифты", вышедшей в 2003 г. Этот лифт предназначен для транспортировки 20-тонных грузов за счет энергии расположенных на Земле лазерных установок. Расчетная себестоимость перевозки - 150 долларов за килограмм, а стоимость проекта оценивается в 6 млрд долларов.

В 2013 г. академия IAA развила эту концепцию в собственном проекте, обеспечивающем повышенную защиту лифтовых кабинок от атмосферных явлений до высоты в 40 км., при достижении которой движение кабинок на орбиту должно происходить уже за счет солнечной энергии. Себестоимость транспортировки - 500 долларов за килограмм, а стоимость постройки первых двух таких лифтов - 13 млрд долларов.

В ранних концепциях космического лифта приводились разнообразные возможные решения проблемы космического противовеса, призванного удерживать трос в натянутом положении - в том числе предлагалось использовать в этих целях захваченный и доставленный на нужную орбиту астероид. В отчете IAA отмечается, что когда-нибудь такое решение, может быть, и удастся реализовать, но в ближайшем будущем это невозможно.

Плавучий "якорь"

Чтобы удерживать трос массой в 6300 тонн, противовес должен весить 1900 тонн. Частично его можно сформировать из космических кораблей и других вспомогательных аппаратов, которые будут использоваться для постройки лифта. Возможно также использование находящихся неподалеку отработавших спутников, отбуксировав их на новую орбиту.

Они также предлагают выполнить "якорь", крепящий трос к Земле, в виде плавучей платформы размером с крупный нефтеналивной танкер или авианосец, и разместить его неподалеку от экватора, с целью увеличения его несущей способности. В качестве оптимальной точки размещения "якоря" предлагается район в 1000 км на запад от Галапагосских островов, редко подверженный ураганам, торнадо и тайфунам.

Космический мусор можно было бы использовать в противовесе на верхнем конце троса космического лифта

Корпорация Obayashi - одна из пяти крупнейших строительных фирм Японии - в прошлом году объявила о планах по созданию космического лифта более прочной конструкции, по которому перемещались бы автоматические кабинки на магнитной подвеске. Подобная технология применяется на высокоскоростных железных дорогах. Более прочный трос необходим потому, что японский лифт предполагается использовать и для транспортировки людей. Стоимость проекта оценивается в 100 млрд долларов, при этом себестоимость транспортировки грузов на орбиту может составить 50-100 долларов за килограмм.

Хотя технических трудностей при строительстве подобного лифта, несомненно, будет предостаточно, на самом деле единственный элемент конструкции, который пока невозможно создать, - это сам трос, говорит Суон: "Единственная технологическая проблема, которую предстоит решить - подбор подходящего материала для изготовления троса. Все остальное мы можем построить уже сейчас".

Алмазные нити

На данный момент самым подходящим материалом для троса можно считать углеродные нанотрубки, созданные в лабораторных условиях в 1991 г. Эти цилиндрические структуры имеют предел прочности на разрыв в 63 гигапаскаля, то есть они примерно в 13 раз прочнее самой прочной стали.


Максимально достижимая длина таких нанотрубок постоянно увеличивается - в 2013 г. китайским ученым удалось довести ее до полуметра. Авторы доклада IAA прогнозируют, что к 2022 г. будет достигнута длина в километр, а к 2030 гг. можно будет создавать нанотрубки подходящей длины для использования в космическом лифте.

Тем временем в сентябре прошлого года появился новый сверхпрочный материал: в статье, опубликованной в научном журнале по материаловедению Nature Materials, группа ученых под руководством профессора химии Джона Бэддинга из Университета штата Пенсильвания сообщила о получении в лаборатории супертонких "алмазных нанонитей", которые могут оказаться даже прочнее, чем углеродные нанотрубки.

Ученые сжали жидкий бензол под давлением, превышающим атмосферное в 200 000 раз. Затем давление медленно понизили, и оказалось, что атомы бензола перегруппировались, создав высокоупорядоченную структуру из пирамидальных тетраэдров.

В результате образовались супертонкие нити, очень напоминающие по структуре алмаз. Хотя напрямую измерить их прочность невозможно из-за сверхмалых размеров, теоретические расчеты указывают на то, что эти нити могут оказаться более прочными, чем самые прочные из существующих синтетических материалов.

Снижение рисков

"Если мы научимся создавать алмазные нанонити или углеродные нанотрубки необходимой длины и с необходимыми качествами, можно быть практически уверенным в том, что они окажутся достаточно прочными для использования в космическом лифте", - говорит Бэддинг.


Впрочем, даже если удастся найти подходящий материал для троса, собрать конструкцию будет весьма непросто. Вероятнее всего, возникнут и трудности, связанные с обеспечением безопасности проекта, необходимого финансирования и грамотного разведения конкурирующих интересов. Однако Суона это не останавливает.

Так или иначе, человечество стремится в космос и готово тратить на это большие деньги

"Разумеется, мы столкнемся с большими сложностями, но проблемы приходилось решать и при строительстве первой трансконтинентальной железной дороги [в США], и при прокладке Панамского и Суэцкого каналов, - говорит он. - Потребуется много времени и денег, но, как и в случае с любым крупным проектом, просто нужно решать проблемы по мере их возникновения, одновременно с этим постепенно снижая возможные риски".

Даже Элон Маск не готов категорически отмести возможность создания космического лифта. "Не думаю, что на сегодня эта идея реализуема, но если кто-то сможет доказать обратное, будет здорово", - сказал он на прошлогодней конференции в Массачусеттском технологическом институте.


Хотя постройка космического лифта находится уже в пределах наших инженерных возможностей, страсти вокруг этого сооружения в последнее время, к сожалению, поутихли. Причина в том, что учёные пока никак не могут получить технологию для производства углеродных нанотрубок нужной прочности в промышленных масштабах.

Идею безракетного вывода грузов на орбиту предложил тот же самый человек, который основал и теоретическую космонавтику – Константин Эдуардович Циолковский. Вдохновившись увиденной в Париже Эйфелевой башней, он описал своё видение космического лифта в виде башни огромной высоты. Её верхушка как раз находилась бы на геоцентрической орбите.

Лифт-башня основывается на прочных материалах, препятствующих сжатию – но современные идеи космических лифтов всё же рассматривают версию с тросами, которые должны быть прочными на растяжение. Такую идею впервые предложил в 1959 году ещё один русский учёный, Юрий Николаевич Арцутанов . Впервые научная работа с подробными расчётами по космическому лифту в виде троса была опубликована в 1975 году, а в 1979 Артур Кларк популяризовал её в своём произведении «Фонтаны рая».

Хотя нанотрубки в данный момент признаются самым прочным материалом, и единственным, подходящим для постройки лифта в виде троса, тянущегося с геостационарного спутника, прочности получаемых в лаборатории нанотрубок пока не хватает до расчётной.

Теоретически прочность нанотрубок должна быть более 120 ГПа, но на практике самая высокая растяжимость однослойной нанотрубки была 52 ГПа, а в среднем они ломались в диапазоне 30-50 ГПа. Для космического лифта необходимы материалы с прочностью 65-120 ГПа.

В конце прошлого года на крупнейшем американском фестивале документальных фильмов DocNYC был показан фильм Sky Line , в котором описаны попытки инженеров из США построить космический лифт – включая участников конкурса X-Prize от НАСА.

Главными героями фильма выступают Брэдли Эдвардс и Майкл Лэйн . Эдвардс – астрофизик, работавший над идеей космического лифта с 1998 года. Лэйн – предприниматель и основатель компании LiftPort, пропагандирующей коммерческое использование углеродных нанотрубок.

В конце 90-х и начале 2000-х Эдвардс, получив гранты от НАСА, плотно разрабатывал идею космического лифта, рассчитывая и оценивая все аспекты проекта. Все его расчёты показывают, что эта идея осуществима – если только появится достаточно прочное для троса волокно.

Эдвардс какое-то время заключал партнёрское соглашение с LiftPort для поисков финансирования проекта лифта, но из-за внутренних разногласий проект так и не состоялся. LiftPort закрылась в 2007 году – хотя годом ранее, в рамках доказательства работоспособности некоторых своих технологий, успешно продемонстрировала робота , карабкающегося по вертикальному тросу в милю длиной, подвешенному на воздушных шарах.

Что частный космос, сконцентрировавшийся на повторно используемых ракетах, может полностью вытеснить разработку космического лифта в обозримом будущем. По его словам, космический лифт привлекателен только тем, что предлагает более дешёвые способы доставки грузов на орбиту, а многоразовые ракеты разрабатываются именно для удешевления этой доставки.

Эдвардс же винит в стагнации идеи отсутствие реальной поддержки проекта. «Именно так выглядят проекты, которые сотни людей, разбросанные по всему миру, разрабатывают в качестве хобби. Никакого серьёзного прогресса достигнуто не будет, пока не появится реальной поддержки и централизованного управления».

Иная ситуация с разработкой идеи космического лифта в Японии. Страна славится наработками в области робототехники, а японский физик Сумио Иидзима считается пионером в области нанотрубок. Идея космического лифта здесь является чуть ли не национальной.

Японская компания Обаяши клянётся к 2050 году представить работающий космический лифт. Руководитель компании, Йожи Ишикава рассказывает, что они работают с частными подрядчиками и местными университетами в целях улучшения существующей технологии получения нанотрубок.

Ишикава говорит, что хотя компания понимает всю сложность проекта, они не видят принципиальных препятствий для его осуществления. Также он считает, что популярность идеи космического лифта в Японии вызвана необходимостью наличия какой-то национальной идеи, сплачивающей людей на фоне тяжёлого экономического положения последней пары десятков лет.

Ишикава уверен, что хотя идея такого масштаба, скорее всего, может быть реализована только путём международного сотрудничества, Япония вполне может стать её локомотивом благодаря большой популярности космического лифта в стране.

Тем временем канадская космическая и оборонная компания Thoth Technology получила летом прошлого года патент США № 9085897 на их вариант космического лифта. Точнее, концепция предусматривает постройку башни, которая сохраняет жёсткость благодаря сжатому газу.

Башня должна доставлять грузы на высоту в 20 км, откуда они уже будут выводиться на орбиту при помощи обычных ракет. Такой промежуточный вариант, по расчётам компании, позволит экономить до 30% топлива, по сравнению с ракетой.