Все о тюнинге авто

Что происходит в результате оплодотворения объединяется. Оплодотворение в процессе полового размножения. Какие проблемы могут возникнуть в процессе оплодотворения

В процессе эволюции растительного мира у цветковых растений (и только у них) появилось такое явление как двойное оплодотворение, в результате которого образуется семя. У голосеменных растений также образуются семена, но двойного оплодотворения нет. Оплодотворению предшествует опыление, т. е. перенос пыльцы с тычинок одного цветка на пестик чаще всего другого цветка. При двойном оплодотворении в семязачаток проникают два спермия, один из которых сливается с яйцеклеткой, а второй - с крупной центральной клеткой.

Пыльцевые зерна разных цветковых растений имеют различную форму. При этом чаще всего поверхность пыльцевых зерен шероховатая, что позволяет им удерживаться на теле насекомых-опылителей и потом на рыльце пестика. Кроме того, рыльцем выделяется липкая жидкость, удерживающая пыльцу. На рыльце пестика пыльцевое зерно образует пыльцевую трубку , которая растет между клетками рыльца и столбика пестика, после чего врастает в полость завязи пестика.

В полости завязи может находиться один семязачаток, несколько или множество. Их количество зависит от вида растения. Семязачатки по-другому называются семяпочками . Если в завязи несколько семязачатков, то каждый из них опыляется своим пыльцевым зерном (содержащимися в нем спермиями), т. е. в таком случае через пестик будет прорастать несколько пыльцевых трубок.

Семязачатки отрастают от внутренней поверхности стенок завязи в полость завязи. Семязачаток состоит из покрова и ткани центральной части, где образуются восемь гаплоидных клеток (имеющих одинарный набор хромосом). Две из этих клеток сливаются, в результате образуется крупная центральная клетка , у которой восстанавливается двойной набор хромосом.

У семязачатка со стороны, противоположной месту прикрепления к завязи, находится пыльцевход , представляющий собой небольшое отверстие, ведущее к центральной части семязачатка.

В кончике растущей пыльцевой трубки находятся два спермия . У спермиев в отличие от сперматозоидов нет хвостика, и поэтому спермии неподвижны. Когда трубка врастает в семязачаток через пыльцевход, то один спермий сливается с одной из гаплоидных клеток, которая играет роль яйцеклетки . В результате этого оплодотворения образуется зигота с двойным набором хромосом. В последствии из нее развивается зародыш семени .

Второй спермий сливается с центральной клеткой. В результате этого оплодотворения в последствии образуется так называемый эндосперм . Для него характерен тройной набор хромосом, что уникально, так как клетки тела покрытосеменных и многих других организмов имеют двойной набор хромосом.

Эндосперм представляет собой ткань, содержащую запас питательных веществ. Эти вещества зародыш использует в процессе развития семени или при прорастании семени. В первом случае вместо эндосперма в зрелом семени основную массу занимают органы зародыша (чаще всего крупные семядоли), во втором случае - эндосперм остается.

При созревании семени покровы семязачатка превращаются в семенную кожуру .

Оплодотворение, исходный момент возникновения новой генетической индивидуальности, представляет собой процесс соединения женской и мужской гамет.

В результате оплодотворения возникает одноклеточный зародыш с диплоидным набором хромосом и активируется цепь событий, лежащих в основе развития организма.

Биологическое значение оплодотворения огромно: будучи предпосылкой развития новой индивидуальности, оно вместе с тем является условием продолжения жизни и эволюции вида.

Следует подчеркнуть, что оплодотворение представляет собой не одномоментный акт, но именно процесс, занимающий более или менее продолжительный отрезок времени. Это многоступенчатый процесс, в котором различаются следующие этапы: привлечение сперматозоида яйцом, связывание гамет и, наконец, слияние мужских и женских половых клеток. В научной литературе события, связанные со сближением гамет иногда называют осеменением различая наружное и внутреннее осеменение, в зависимости от того, выводятся мужские половые клетки в окружающую среду или в половые органы женской особи. Наружное осеменение характерно для животных, обитающих в водной среде. Внутреннее осеменение присуще главным образом наземным животным, хотя оно достаточно часто встречается и у обитателей водной среды. Осеменение может быть свободным при котором все области ооцита доступны спермиям, но может быть и ограниченным, когда на поверхности яйцеклетки имеется плотная оболочка с микропиле. При внутреннем осеменении у ряда животных мужские гаметы передаются самкам в виде сперматофоров , особых капсул, содержащих сперматозоиды. Сперматофоры сначала выводятся в окружающую среду, а затем тем или иным способом переносятся в половые пути самки.

Соединение гамет предопределяет возможность кариогамии , или слияния ядер. Благодаря кариогамии происходит объединение отцовских и материнских хромосом, ведущее к образованию генома новой особи. В результате слияния гамет возникает диплоидная зигота, восстанавливается способность к репликации ДНК и начинается подготовка к делениям дробления. Механизмы активации яйца к развитию относительно автономны. Их включение может быть осуществлено и помимо оплодотворения, что происходит, например, при естественном или искусственном девственном развитии, или партеногенезе .

Интерес к проблеме оплодотворения выходит далеко за рамки собственно эмбриологии. Слияние гамет - плодотворно используемая модель для изучения тонких молекулярных и клеточных механизмов специфического взаимодействия клеточных мембран; для изучения молекулярных основ активации метаболизма и пролиферации соматических клеток. Общебиологический интерес представляет и то, что оплодотворение являет собой яркий и, может быть, уникальный пример полного обращения клеточной дифференциации. Действительно, высокоспециализированные половые клетки не способны к самовоспроизведению. Они гаплоидны и не могут делиться. Однако после слияния они превращаются в тотипотентную клетку, которая служит источником формирования всех клеточных типов, присущих данному организму.

История открытия оплодотворения теряется в глубине веков. Во всяком случае, в XVIII столетии итальянский естествоиспытатель аббат Лаццаро Спалланцани (1729-1799) экспериментально доказал, что оплодотворение зависит от наличия спермы, и впервые осуществил искусственное оплодотворение яиц лягушки, смешивая их со спермой, полученной из семенников. Тем не менее смысл происходящих при этом событий оставался неясным практически до последней четверти XIX века, когда Оскар Гертвиг (1849-1922) в конце 1870-х годов, изучая оплодотворение у морских ежей, пришел к заключению, что сущность этого процесса состоит в слиянии ядер половых клеток. Вместе с работами бельгийца Эдуарда ван Бенедена (1883, аскарида), немецкого ученого Теодора Бовери (1887, аскарида), швейцарского зоолога Германа Фоля (1887, морская звезда) исследования О. Гертвига заложили основу современных представлений об оплодотворении. Следует подчеркнуть, что именно эти работы послужили веским основанием для предположения о том, что ядро является носителем наследственных свойств. Именно Т. Бовери (1862-1915) в серии блестящих цитологических исследований обосновал в конце 1880-х годов теорию индивидуальности хромосом и создал основу цитогенетики.

Вскоре после выяснения сущности оплодотворения исследователи сосредоточили внимание на механизмах, лежащих в основе этого процесса. Эта область исследований сохраняет актуальность и в наше время. Пальма первенства в построении теории оплодотворения принадлежит американскому исследователю Франку Лилли (1862-1915). Изучая свойства «яичной воды», т. е. морской воды, в которой некоторое время находились неоплодотворенные яйца морского ежа Arbacia или полихеты Nereis, Лилли обнаружил, что из яиц выделяется вещество, которое обладает способностью склеивать спермин в комки. Наблюдаемая агглютинация оказалась видоспецифичной, и Лилли назвал фактор агглютинации, выделяемый неоплодотворенным яйцом, веществом оплодотворения, или фертилизином (от англ. fertilization - оплодотворение). Суть выдвинутой Лилли теории оплодотворения состоит в признании того, что в периферической области яйца находится фертилизин, который имеет сродство к поверхностным рецепторам спермия (антифертилизин спермия). Благодаря этому сродству фертилизин связывает, согласно Лилли, спермии. Однако, чтобы претендовать на универсальность и объяснить не только механизм соединения гамет, но и причины агглютинации спермиев, возможность предотвращения полиспермии, высокую специфичность процесса оплодотворения и т д., теория фертилизина нуждалась в многочисленных допущениях, под гнетом которых она в конце концов и угасла.

Уже в ходе ранних исследований оплодотворения возникло представление о гамонах - веществах, которые обеспечивают активацию или блокирование отдельных этапов оплодотворения. В соответствии с их происхождением различали гиногамоны, выделяемые яйцеклетками, и андрогамоны, вырабатываемые мужскими половыми клетками. Так, полагали, что гиногамон 1, диффундируя из яйца, активирует движение сперматозоида, преодолевая действие андрогамона 1, который ингибирует движение сперматозоида. Гиногамон 2 - синоним фертилизина, а андрогамон 2 - антифертилизина спермия.

В пятидесятые годы XX столетия идея о взаимодействии фертилизина с антифертилизином трансформировалась в гипотезу специфического фагоцитоза. Согласно этой концепции, наличие на поверхности яйца и спермия взаимодействующих молекул обеспечивает комплементарную реакцию по принципу застежки «молнии», благодаря которой спермий оказывается поглощенным яйцом.

Несмотря на известную умозрительность, эти и многие другие подобные гипотезы о механизмах взаимодействия сперматозоидов и яиц сыграли свою положительную роль, обнаружив, во-первых, существование целого семейства специфических молекул на поверхности взаимодействующих гамет и, во-вторых, положив начало планомерным исследованиям природы этих молекул.

Вторая половина прошлого столетия - период расцвета ультраструктурных и молекулярно-биологических исследований, которые выявили большое разнообразие конкретных форм клеточного взаимодействия при оплодотворении. Стало ясно, что универсальная теория оплодотворения, если и может существовать, то только как свод некоторых самых общих принципов организации этого процесса.

Конкретные механизмы оплодотворения зависят от множества факторов. Достаточно сказать о своеобразии оплодотворения у животных с наружным и внутренним осеменением. Очевидно, что определенные различия процесса оплодотворения обусловлены и тем, что у разных животных проникновение спермия в яйцо происходит на разных этапах оогенеза. У многих аннелид, моллюсков, нематод и ракообразных сперматозоид проникает в ооциты первого порядка на стадии профазы. У других кольчатых червей, моллюсков и у насекомых - на стадии метафазы первичного ооцита. Для многих позвоночных характерно осеменение на стадии метафазы вторичного ооцита. У некоторых кишечнополостных и у морских ежей оплодотворение происходит на стадии зрелого яйца уже после завершения делений созревания и выделения направительных, или редукционных телец. Наконец, нельзя не вспомнить и разнообразие типов сперматозоидов, среди которых имеются жгутиковые формы и спермин без жгутиков (например, амебоидные спермин нематод), с акросомой и без нее, имеющие акросомную нить и лишенные ее. Естественно, что в каждом таком случае конкретные механизмы, обеспечивающие тонкое взаимодействие между половыми клетками, различаются.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Оплодотворение у растений, животных и человека - это слияние мужской и женской половых клеток - гамет, в результате которого образуется первая клетка нового организма - зигота. С оплодотворением связано половое размножение и передача наследственной информации от родителей потомкам.

Оплодотворение свойственно большинству растений. Ему обычно предшествует образование гаметангиев (половых органов), в которых развиваются гаметы. Если у растения в цикле развития происходит половой процесс, то происходит и мейоз, т. е. обнаруживается смена ядерных фаз (см. Чередование поколений).

Типы полового процесса у низших растений разнообразны. Назовем лишь основные. Слияние имеющих жгутики гамет, форма и размеры которых одинаковы, называют изогамией, а гаметы - изогаметами. Так, изогамны многие одноклеточные водоросли, например некоторые хламидомонады; будучи одноклеточными, они сами становятся гаметангиями, образуя гаметы. У многоклеточной водоросли улотрикса гаметангиями становятся некоторые не отличающиеся от других клетки. У некоторых изогамных бурых водорослей гаметангии отличны от остальных клеток растения.

У многих изогамных водорослей образовать зиготу может не любая пара гамет, поскольку гаметы физиологически различны. Внешне одинаковые гаметы нельзя назвать ни мужскими, ни женскими; физиологические же различия обозначают при изогамии знаками + и -. Слиться могут только гаметы разных знаков, образованные физиологически разными (+ и -) особями водоросли.

Слияние имеющих жгутики гамет, различающихся физиологически и размерами, называют гетерогамией, а гаметы - женской (более крупную) и мужской (меньшую). Гетерогамны, например, некоторые хламидомонады. Слияние безжгутиковой крупной женской гаметы (яйцеклетки) с мелкой, мужской, имеющей обычно жгутик или жгутики (сперматозоидом), носит название оогамии. Женские гаметангии большинства оогамных низших растений называют оогониями, а мужские - антеридиями. Оогамны, например, многие зеленые и бурые, а также красные водоросли.

У изо-, гетеро- и многих оогамных низших растений гаметы выходят из гаметангиев в воду, где и происходит оплодотворение. У некоторых (например, у зеленой водоросли вольвокса) яйцеклетка остается в оогонии, куда проникают вышедшие в воду сперматозоиды и где происходит слияние гамет.

Все высшие растения оогамны. Типичные их гаметангии - антеридии (мужские) и архегонии (женские) - многоклеточны. В архе-гонии образуется одна яйцеклетка, в антеридии - много сперматозоидов. У мохо- и папоротникообразных вышедшие из антеридиев сперматозоиды подплывают в воде к вскрывшимся архегониям и сливаются с яйцеклетками внутри архегониев. У папоротникообразных и семенных растений оплодотворение происходит на (или в) заростках (гаметофитах), развивающихся у первых самостоятельно, а у вторых - на спорофитах (см. Чередование поколений). Заростки равноспоровых папоротникообразных обоеполы, а разноспоровых и всех семенных - раздельнополы (см. Споры). Сильная редукция мужского заростка семенных растений привела к тому, что антеридии в нем (т. е. в пыльцевом зерне) не формируются ни у голо-, ни у покрытосеменных. В женском заростке (первичном эндосперме) почти всех голосеменных архегонии еще развиваются, а в женском заростке - зародышевом мешке - покрытосеменных их уже нет.

У семенных растений оплодотворению предшествует опыление - перенесение пыльцевых зерен из микроспорангиев, где они начали развиваться из микроспор, в пыльцевую камеру семязачатка (у голосеменных) или на рыльце пестика (у покрытосеменных). Лишь у немногих голосеменных (саговники, гинкго) в мужских заростках образуются многожгутиковые сперматозоиды, а у остальных, например у хвойных, и у всех покрытосеменных мужские гаметы - спермии - жгутиков не имеют.

Сперматозоиды достигают архегониев, двигаясь в выработанной самим растением жидкости. У семенных растений, имеющих спермии, последние идут к яйцеклеткам по пыльцевым трубкам, образуемым мужскими заростками. У покрытосеменных после опыления пыльцевое зерно образует пыльцевую трубку, которая, удлиняясь, растет между клетками рыльца и столбика, входит в полость завязи и, пройдя через пыльцевход семязачатка, врастает своим концом в зародышевый мешок. Здесь из вскрывшейся пыльцевой трубки выходят спермии (см. рис.). Один спермий сливается с яйцеклеткой, образуя диплоидную зиготу, дающую начало зародышу. Второй сливается с центральной клеткой зародышевого мешка, имеющей у большинства покрытосеменных два гаплоидных ядра или одно диплоидное (если ядра слились). После слияния центральной клетки со спермием ее ядро становится триплоидным. Этот своеобразный процесс, свойственный только покрытосеменным растениям, был впервые описан русским ученым С. Г. Навашиным (1898) и назван двойным оплодотворением. Из триплоидной клетки развивается многоклеточная запасающая ткань - вторичный эндосперм, питательные вещества которого используются зародышем на ранних стадиях его развития.

Оплодотворение, независимое от присутствия свободной воды, - одно из важнейших приспособлений семенных растений к существованию на суше.

Оплодотворение у многоклеточных животных заключается в слиянии двух гамет разного пола - сперматозоида и яйцеклетки. Сперматозоид вносит в яйцеклетку наследственный материал, содержащийся в его ядре. Место проникновения сперматозоида в яйцеклетку может определять расположение частей будущего организма. Например, у амфибий та часть яйцеклетки, в которую вошел сперматозоид, в ходе развития превратится в передний конец тела.

До того момента, когда один из сперматозоидов коснется поверхности яйцеклетки, последняя влияет на их поведение, выделяя определенные вещества. Они заставляют сперматозоиды двигаться быстрее или же, наоборот, склеивают и обездвиживают их (это необходимо, если сперматозоидов слишком много). Особенно активные взаимодействия начинаются, как только сперматозоид касается поверхности яйцеклетки. В течение нескольких секунд передняя часть сперматозоида превращается в трубочку, кончик которой склеивается с поверхностью яйцеклетки. Через эту трубочку в яйцеклетку вдавливается содержимое сперматозоида, и в том числе его ядро с наследственным материалом.

В яйцеклетке сразу же начинаются бурные изменения, которые внешне проявляются в том, что на ее поверхности образуется оболочка, препятствующая проникновению других сперматозоидов. Кроме того, в яйцеклетке происходят быстрые перестройки структур цитоплазмы, ответственных за синтез белка: процессы синтеза сразу же и во много раз ускоряются. Лишь после этого наследственный материал сперматозоида, вошедшего в яйцеклетку, объединяется с наследственным материалом ядра яйцеклетки. Материнские и отцовские хромосомы (носители наследственного материала) распределяются поровну по всем клеткам зародыша, образующегося из зиготы - оплодотворенной яйцеклетки.

Фаза I I – в ней происходит акросомная реакция. Наружная мембрана сперматозоида разрывается, высвобождаются протеолитические ферменты и растворяют оболочку яйцеклетки. Плазматические мембраны сливаются, цитоплазмы соединяются. В цитоплазму яйцеклетки переходят ядро и центриоль сперматозоида. Хвостовая часть рассасывается. Затем яйцеклетка активируется, меняется её потенциал и отслаивается её желточная оболочка и образуется оболочка оплодотворения (кортикальная реакция). Активация заканчивается началом синтеза белка.

Фаза III – сингамия . В ней выделяют:

    Стадия 2 х пронуклеусов – мужское ядро набухает, принимает вид профазного, за это время удваивается ДНК и мужской пронуклеус получает гаплоидный набор редуплецированных хромосом (n2c). Яйцеклетка в момент встречи со сперматозоидом находится в стадии мейоза, заблокированной с помощью специального фактора. После встречи со сперматозоидом, яйцеклетка активируется и блок снимается. Ядро яйцеклетки, закончившее мейоз, превращается в женский пронуклеус, так же приобретая набор хромосом n2c.

    Стадия синкариона – слияние ядерного материала и образование зиготы.

Первое митотическое деление зиготы приводит к образованию двух клеток зародыша (бластомеров) с набором хромосом 2n2c в каждом.

Партеногенез

дочерний организм иногда развивается из неоплодотворенной яйцеклетки. Это явление называют девственным развитием или партеногенезом . Источником наследственного материала для развития потомка в этом случае обычно служит ДНК яйцеклетки - гиногенез . Реже наблюдается андрогенез - развитие потомка из клетки с цитоплазмой ооцита и ядром сперматозоида. Ядро женской гаметы в случае андрогенеза погибает.

Оплодотворением называют процесс слияния женской (яйцеклетки) и мужской (сперматозоид) половых клеток, который приводит к образованию нового одноклеточного организма (зиготы). Именно этот момент многие считают началом новой жизни и точкой отсчета беременности. Узнаем подробнее, как происходит оплодотворение и на каких этапах может возникнуть риск гибели будущего плода.

Слияние яйцеклетки и сперматозоида называют процессом оплодотворения.

Строение половых клеток мужчины

В норме образование сперматозоидов, способных к оплодотворению, начинается у человека в периоде полового созревания (12-13 лет). Зрелый сперматозоид состоит из головки, шейки и хвоста. Самая важная часть сосредоточена в головке, где находится ядро, которое доставляет в яйцеклетку отцовские гены.

Функция хвоста — это движение, именно эта часть сперматозоида позволяет ему двигаться со скоростью 2-3 мм в минуту и достигать матки и маточных труб. Сперматозоиды находятся в сперме. Она представляет собой вязкую беловатую жидкость, где помимо половых клеток определяется секрет семенных пузырьков и простаты.

При половом акте во влагалище попадает 3-5 мл спермы, где находится около 300-400 млн сперматозоидов. В норме большая часть из них имеет нормальную подвижность и правильное строение. Во влагалище они гибнут в течение нескольких часов, но, достигнув маточных труб, могут сохранять свою жизнеспособность еще трое суток.

У мужчины сперматозоиды вырабатываются на протяжении всей жизни. Их полное обновление в организме человека происходит примерно раз в 2-2,5 месяца.

В ядре сперматозоида находится генетическая информация отца.

Женские половые клетки

Женщина появляется на свет с определённым запасом яйцеклеток. Когда запас яйцеклеток, истощается наступает климакс. Поэтому если мужчина теоретически способен зачать ребенка в любом возрасте, то женщине отводится ограниченный запас времени.

В период полового созревания у девочки фолликулы приобретают способность созревать и разрываться для того, чтобы яйцеклетка вышла в брюшную полость и могла попасть в маточную трубу для оплодотворения.

Такой процесс происходит примерно раз в месяц в середине менструального цикла и называется овуляцией. Именно в этот период яйцеклетка может встретиться со сперматозоидом для зачатия.

Зрелая яйцеклетка человека не обладает самостоятельной подвижностью в отличие от сперматозоида. Ее движение происходит под действием присасывающего перистальтического эффекта маточной трубы и мерцания ресничек эпителия. Яйцеклетка состоит из ядра, где сосредоточена генетическая информация матери, блестящей оболочки и лучистого венца.

Способность к оплодотворению выше всего сразу после и сохраняется она на протяжении суток. В дальнейшем происходит гибель яйцеклетки. У женщины этот процесс проявляется менструальным кровотечением.

Яйцеклетка окружена прозрачной оболочкой и лучистым венцом.

Где и как проходит процесс оплодотворения человека

При половом акте сперма обычно попадает на задний свод влагалища, с которым соприкасается шейка матки. В норме среда во влагалище кислая, что позволяет отсеять слабые и нежизнеспособные сперматозоиды. Выжившие мужские клетки попадают в матку, где среда щелочная и начинают двигаться активнее по направлению к маточным трубам.

Важно! В обычные дни шейка матки прикрыта плотной слизистой пробкой, но в период проницаемость слизи возрастает, что дает возможность сперматозоидам проникнуть к месту оплодотворения.

После семяизвержения во влагалище проходит всего несколько минут и активные сперматозоиды уже можно обнаружить в матке. Спустя 2-3 часа они достигают концевых отделов маточных труб, где находится яйцеклетка. Они могут существовать там в течение двух суток, сохраняя свою способность к оплодотворению и ожидая яйцеклетку. Если этого не происходит сперматозоиды погибают.

Сам процесс оплодотворения (слияния) происходит в расширенной (ампулярной) части маточной трубы. Здесь к яйцеклетке устремляются тысячи сперматозоидов. Прозрачная оболочка яйцеклетки и клетки лучистого венца дают возможность проникнуть в яйцеклетку только одному или нескольким сперматозоидам. Но только один из них и будет участвовать в оплодотворении.

Важно! В редких случаях бывает нарушение реакции и яйцеклетку оплодотворяют несколько сперматозоидов. Этот процесс называется полиспермией и приводит к образованию нежизнеспособной зиготы.

Встреча сперматозоида и яйцеклетки завершается слиянием их ядер, где не просто суммируется, а взаимно объединяется генетический материал и происходит образование единого ядра зиготы. Так происходит передача генетического материала ребенку от обоих родителей.

Как дальше протекает этот процесс по дням

Стадия зиготы длится в течение полутора суток. Вскоре она вступает в процесс дробления клеток в результате чего образуется зародыш. Он медленно движется по маточной трубе и достигает матки только через 7-10 дней после оплодотворения. Движение зародыша происходит благодаря мерцанию ресничек и перистальтической активности самой маточной трубы.

Затем он внедряется (имплантация) в слизистую оболочку матки и погружается в ее функциональный слой. Это процесс занимает около 2 суток.

После того как имплантация завершилась, зародыш и его оболочки начинают быстро развиваться. Он постепенно обрастает сосудами, что обеспечивает его питание и дыхание. После завершения всех этих стадий образуется плод, окруженный околоплодными водами и тремя оболочками.

Через 7-10 дней после оплодотворения зародыш внедряется в тело матки.

Какие проблемы могут возникнуть в процессе оплодотворения

С одной стороны, оплодотворение — это естественный биологический процесс, который протекает сам по себе и в результате на свет появляется новая жизнь. Но пары, которые столкнулись с бесплодием воспринимают это совершенно иначе. Рассмотрим из-за чего чаще всего не получается зачать ребенка с первого раза:

  • половой акт произошел, когда у женщины не было овуляции, т.е. нет яйцеклетки в маточной трубе;
  • сперматозоиды оказались нежизнеспособными и не достигли яйцеклетки в период овуляции;
  • непроходимость маточных труб, которая не дала возможности встретиться сперматозоиду и яйцеклетке;
  • яйцеклетку оплодотворили несколько сперматозоидов и зародыш погиб;
  • оплодотворение яйцеклетки произошло, но дефектным сперматозоидом – в таких ситуациях зигота гибнет на ранних стадиях;
  • нарушился процесс транспорта зародыша в матку и внедрение произошло в маточной трубе (внематочная беременность) – гибель зародыша и состояние, угрожающее жизни женщины;
  • зародыш добрался до маточной трубы, но не смог внедриться из-за тонкого функционального слоя матки или его отсутствия (бывает после перенесенных абортов). Происходит выкидыш еще до того, как женщина узнает о беременности.

Здесь перечислен только небольшой список проблем, из-за которых процесс оплодотворения и начала беременности может сорваться. Некоторые механизмы прерывания обусловлены защитной реакцией природы для появления на свет здорового потомства, например, гибель зародыша с дефектными аномалиями. Другие возникают из-за проблем со здоровьем как у мужчины, так и у женщины. Чтобы не думать о том, как происходит оплодотворение, нужно следить за состоянием своей репродуктивной системы и планировать беременность.